Skip to main content

Use of Natural Chemical Products for Pest Control

  • 658 Accesses

Abstract

Natural products are chemical substances produced by living organisms, which, due to their biological activities, can be employed in pest management programs. These substances may be the result of the metabolism of microorganisms, animals, and plants. Secondary plant metabolites can either be used in the form of plant extracts and essential oils (mainly from organic farms), or the active principle(s) can be isolated and synthesized in laboratory, which reduces the costs of the process. Another approach is the synthesis of other substances from lead molecules of plant substances. This chapter covers the natural products of plant origin and their applications in the management of arthropod pests, with emphasis on the scientific results and the practical evidence of studies carried out in Latin America.

Keywords

  • Botanical insecticide
  • Plant secondary metabolites
  • Integrated pest management

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_38
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 38.1

References

  • Agra MF, Baracho GS, Nurit K et al (2007) Medicinal and poisonous diversity of the flora of “CaririParaibano”, Brazil. J Ethnopharmacol 111(2):383–395

    CAS  PubMed  CrossRef  Google Scholar 

  • Alarcón J, Cespedes CL (2015) Chemical constituents and biological activities of South American Rhamnaceae. Phytochem Rev 14(3):389–401

    CrossRef  CAS  Google Scholar 

  • Alves DS, Morejón RC, Machado ART et al (2015) Acaricidal activity of Annonaceae fractions against Tetranychus tumidus and Tetranychus urticae (Acari: Tetranychidae) and the metabolite profile of Duguetia lanceolata (Annonaceae) using GC-MS. Semina Ciênc Agrár 36(6):4119–4132

    CrossRef  Google Scholar 

  • Alves DS, Machado ART, Campos VAC et al (2016) Selection of Annonaceae species for the control of Spodoptera frugiperda (Lepidoptera: Noctuidae) and metabolic profiling of Duguetia lanceolata using nuclear magnetic resonance spectroscopy. J Econ Entomol 109(2):649–659

    CAS  PubMed  CrossRef  Google Scholar 

  • Ansante TF, Ribeiro LP, Bicalho KU et al (2015) Secondary metabolites from Neotropical Annonaceae: screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Ind Crop Prod 74:969–976

    CAS  CrossRef  Google Scholar 

  • Ansante TF, Ribeiro LP, Vendramim JD (2017) Acute and chronic toxicities of an annonin-based commercial bioinsecticide and a joint mixture with a limonoid-based formulation to the fall armyworm. Neotrop Entomol 46(2):216–222

    CAS  PubMed  CrossRef  Google Scholar 

  • Bajwa AA, Ahmad A (2012) Potential applications of neem based products as biopesticides. Health 3:116–120

    Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant-herbivore interactions. Phytochemistry 72(13):1551–1565

    CAS  PubMed  CrossRef  Google Scholar 

  • Bernardi D, Ribeiro L, Andreazza F et al (2017) Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind Crop Prod 110:30–35

    CAS  CrossRef  Google Scholar 

  • Bhat SV, Nagasampagi BA, Sivakumar M (2005) Chemistry of natural products. Springer, Berlin

    Google Scholar 

  • Blanco CA, Chiaravalle W, Dalla-Rizza M et al (2016) Current situation of pests targeted by Bt crops in Latin America. Curr Opin Insect Sci 15:131–138

    CAS  PubMed  CrossRef  Google Scholar 

  • Boeckler GA, Towns M, Unsicker SB et al (2014) Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera. J Chem Ecol 40(2):150–158

    CAS  PubMed  CrossRef  Google Scholar 

  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2017) Sistema AGROFIT. http://agrofit.agricultura.gov.br. Accessed 2 Nov 2017

  • Brito EF, Baldin ELL, Silva RCM et al (2015) Bioactivity of Piper extracts on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Pesqui Agropecu Bras 50:196–202

    CrossRef  Google Scholar 

  • Cespedes CL, Molina SC, Muñoz E et al (2013) The insecticidal, molting disruption and insect growth inhibitory activity of extracts from Condalia microphylla Cav. (Rhamnaceae). Ind Crop Prod 42:78–86

    CAS  CrossRef  Google Scholar 

  • Cespedes CL, Salazar JR, Ariza-Castolo A et al (2014) Biopesticides from plants: Calceolaria integrifolia S.l. Environ Res 132:391–406

    CAS  PubMed  CrossRef  Google Scholar 

  • Cespedes CL, Aqueveque PM, Avila JG et al (2015) New advances in chemical defenses of plants: researches in Calceolariaceae. Phytochem Rev 14(3):367–380

    CAS  CrossRef  Google Scholar 

  • Cespedes CL, Lina-Garcia L, Kubo I et al (2016) Calceolaria integrifolia s.l. complex, reduces feeding and growth of Acanthoscelides obtectus, and Epilachna varivestis: a new source of bioactive compounds against dry bean pests. Ind Crop Prod 89:257–267

    CAS  CrossRef  Google Scholar 

  • Colmenarez Y, Wyckhuys K, Ciomperlik MA et al (2016) Uso do manejo integrado de pragas e controle biológico pelos agricultores na América Latina e no Caribe: desafíos e oportunidades. In: Halfeld-Vieira BA, Marinho-Prado JS, Nechet KL et al (eds) Defensivos agrícolas naturais: uso e perspectivas. Embrapa, Brasília, pp 802–853

    Google Scholar 

  • Colom OA, Popich S, Bardon A (2007) Bioactive constituents from Rollinia emarginata (Annonaceae). Nat Prod Res 21(3):254–259

    CAS  PubMed  CrossRef  Google Scholar 

  • Colom OA, Barrachina I, Mingol IA et al (2008) Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. J Pest Sci 81(2):85–89

    CrossRef  Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63(6):524–554

    CAS  PubMed  CrossRef  Google Scholar 

  • Desmarchelier C (2010) Neotropics and natural ingredients for pharmaceuticals: why isn’t South American biodiversity on the crest of the wave? Phytother Res 24(6):791–799

    PubMed  Google Scholar 

  • Dev S, Koul O (1997) Insecticides of natural origin. Harwood Academic, New York

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach. John Wiley & Sons, Chichester

    Google Scholar 

  • Dietrich F, Strohschoen AAG, Schultz G et al (2011) Utilização de inseticidas botânicos na agricultura orgânica de Arroio do Meio/RS. Rev Bras Agrociência 17(4):251–255

    Google Scholar 

  • Electronic Code of Federal Regulations (e-CFR) (2017). https://www.ecfr.gov/cgi-bin/. Accessed 1 Nov 2017

  • El-Wakeil NE (2013) Botanical pesticides and their mode of action. Gesunde Pflanz 65(4):125–149

    CAS  CrossRef  Google Scholar 

  • Estrela JLV, Fazolin M, Catani V et al (2006) Toxicity of essential oils of Piper aduncum and Piper hispidinervum against Sitophilus zeamais. Pesqui Agropecu Bras 41(2):217–222

    CrossRef  Google Scholar 

  • Fazolin M, Estrela JLV, Valdomiro C et al (2005) Toxicity of Piper aduncum oil to adults of Cerotoma tingomarianus Bechyné (Coleoptera: Chrysomelidae). Neotrop Entomol 34(3):485–489

    CrossRef  Google Scholar 

  • Fazolin M, Estrela JLV, Medeiro AFM et al (2016) Combining the essential oil of Piper aduncum L. with commercial insecticides. Semin Ciênc Agrár 37(6):3903–3914

    CrossRef  Google Scholar 

  • Fouad HA, Faroni LRD, Tavares WDS et al (2014) Botanical extracts of plants from the Brazilian Cerrado for the integrated management of Sitotroga cerealella (Lepidoptera: Gelechiidae) in stored grain. J Stored Prod Res 57:6–11

    CrossRef  Google Scholar 

  • Gallardo KC, Verbel JO, Stashenko EE (2012) Repellency and toxicity of essential oils from Cymbopogon martinii, Cymbopogon flexuosus and Lippia origanoides cultivated in Colombia against Tribolium castaneum. J Stored Prod Res 50:62–65

    CrossRef  CAS  Google Scholar 

  • Gallardo KC, Benitez NP, Castro NP et al (2014) Plants cultivated in Choco, Colombia, as source of repellents against Tribolium castaneum (Herbst). J Asia Pac Entomol 17(4):753–759

    CrossRef  CAS  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414

    CAS  PubMed  CrossRef  Google Scholar 

  • Giongo AMM, Vendramim JD, Freitas SDL et al (2015) Growth and nutritional physiology of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on Meliaceae fractions. Rev Colomb Entomol 41(1):33–40

    Google Scholar 

  • Giongo AMM, Vendramim JD, Freitas SDL et al (2016) Toxicity of secondary metabolites from Meliaceae against Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae). Neotrop Entomol 45(6):725–733

    CAS  PubMed  CrossRef  Google Scholar 

  • Gonçalves GLP, Domingues VC, Ribeiro LP et al (2017) Compounds from Duguetia lanceolata St.- Hil. (Annonaceae) bioactive against Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae: Bruchinae). Ind Crop Prod 97:360–367

    CrossRef  CAS  Google Scholar 

  • Hidalgo RR, Otáñez XP, Carrera SG et al (2017) The current status of resistance to alpha-cypermethrin, ivermectin, and amitraz of the cattle tick (Rhipicephalus microplus) in Ecuador. PLoS One 12(4):e0174652

    CrossRef  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    CAS  PubMed  CrossRef  Google Scholar 

  • Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71(12):1587–1590

    CAS  PubMed  CrossRef  Google Scholar 

  • Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19(3):140–145

    CAS  PubMed  CrossRef  Google Scholar 

  • Isman MB, Seffrin R (2014) Natural insecticides from the Annonaceae: a unique example for developing biopesticides. In: Singh D (ed) Advances in plant biopesticides. Springer, New Delhi, pp 21–33

    CrossRef  Google Scholar 

  • Jardim ICSF, Andrade JA, Queiroz SCN (2009) Resíduos de agrotóxicos em alimentos: uma preocupação ambiental global: um enfoque às maçãs. Quim Nova 32:996–1012

    CAS  CrossRef  Google Scholar 

  • Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterial in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  CrossRef  Google Scholar 

  • Kostyukovsky M, Rafaeli A, Gileadi C et al (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58(11):1101–1106

    CAS  PubMed  CrossRef  Google Scholar 

  • Koul O, Isman MB, Ketkar CM (1990) Properties and uses of neem, Azadirachta indica. Can J Bot 68(1):1–11

    CAS  CrossRef  Google Scholar 

  • Luiz AL, Perlatti B, Marques FA et al (2017) Efficacy of botanical extracts from Brazilian savannah against Diabrotica speciosa and associated bacteria. Ecol Res 32(3):435–444

    CrossRef  Google Scholar 

  • Lundin O, Rundlöf M, Smith HG et al (2015) Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLoS One 10(8):e0136928

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Massarolli A, Pereira MJB, Foerster LA (2017) Annona crassiflora Mart. (Annonaceae): effect of crude extract of seeds on larvae of soybean looper Chrysodeixis includens (Lepidoptera: Noctuidae). Bragantia 76(3):398–405

    CrossRef  Google Scholar 

  • Menezes ELA (2005) Inseticidas botânicos: seus princípios ativos, modo de ação e uso agrícola. Embrapa Agrobiologia, Seropédica

    Google Scholar 

  • Monnerat R, Martins E, Macedo C et al (2015a) Evidence of field-evolved resistance of Spodoptera frugiperda to Bt cornexpressing Cry1F in Brazil that is still sensitive tomodified Bt toxins. PLoS One 10(4):e0119544

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Monnerat R, Martins E, Queiroz P et al (2015b) Insect resistance to Bt toxins in Brazil and Latin America Bt Resistance: characterization and strategies for GM crops producing Bacillus thuringiensis. Toxins 3:26–35

    Google Scholar 

  • Muñoz E, Lamilla C, Marin JC et al (2013) Antifeedant, insect growth regulatory and insecticidal effects of Calceolaria talcana (Calceolariaceae) on Drosophila melanogaster and Spodoptera frugiperda. Ind Crop Prod 42:137–144

    CrossRef  CAS  Google Scholar 

  • Napal GND, Buffa LM, Nolli LC et al (2015) Screening of native plants from central Argentina against the leaf-cutting ant Acromyrmex lundi (Guérin) and its symbiotic fungus. Ind Crop Prod 76:275–280

    CrossRef  Google Scholar 

  • Ntalli NG, Caboni P (2012) Botanical nematicides: a review. J Agric Food Chem 60(4):9929–9940

    CAS  PubMed  CrossRef  Google Scholar 

  • Oliveira AP, Santana AS, Santana EDR et al (2017) Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind Crop Prod 107:198–205

    CAS  CrossRef  Google Scholar 

  • Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Perveen F (ed) Insecticides: advances in integrated pest management. InTech, New York, pp 251–278

    Google Scholar 

  • Parreira DS, Alcántara-de la Cruz R, Leite GLD, Ramalho FS, Zanuncio JC, Serrão JE (2018) Quantifying the harmful potential of ten essential oils on immature Trichogramma pretiosum stages. Chemosphere 199:670–675

    CAS  PubMed  CrossRef  Google Scholar 

  • Pavela R (2016) History, presence and perspective of plant insecticides and farm products for protection against insects: a review. Plant Prot Sci 52:229–241

    CAS  CrossRef  Google Scholar 

  • Pelletier SW (1983) The nature and definition of an alkaloid. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Wiley, New York, pp 1–31

    Google Scholar 

  • Previero CA, Lima Júnior BC, Florencio LK et al (2010) Receitas de plantas com propriedades inseticidas no controle de pragas. CEULP/ULBRA, Palmas

    Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA et al (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140(8):1363–1372

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rais DS, Sato ME, Silva MZ (2013) Detecção e monitoramento da resistência do tripes Frankliniella occidentalis ao inseticida espinosade. Bragantia 72(1):35–40

    CAS  CrossRef  Google Scholar 

  • Ribeiro LP, Ansante TF, Vendramim JD (2016) Effect of ethanolic extract from Annona mucosa seeds on development and feeding behavior of Spodoptera frugiperda. Bragantia 75(3):322–330

    CrossRef  Google Scholar 

  • Sattelle DB, Cordova D, Cheek TR (2008) Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invertebr Neurosci 8(3):107–119

    CAS  CrossRef  Google Scholar 

  • Shukla YM (2009) Plant secondary metabolites. New India Publishing, Delhi

    Google Scholar 

  • Silva MA, Bezerra-Silva GCD, Vendramim JD et al (2012) Inhibition of oviposition by neem extract: a behavioral perspective for the control of the Mediterranean fruit fly (Diptera: Tephritidae). Fla Entomol 95(2):333–337

    CrossRef  Google Scholar 

  • Silva JE, Assis CPO, Ribeiro LMS et al (2016) Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J Econ Entomol 10:2190–2195

    CrossRef  CAS  Google Scholar 

  • Simões CMO, Schenkel EP, Mello JCP et al (2017) Farmacognosia: do produto natural ao medicamento. Artmed, Porto Alegre

    Google Scholar 

  • Sousa MF, Silva LV, Brito MD et al (2012) Tipos de controle alternativo de pragas e doenças nos cultivos orgânicos no estado de Alagoas, Brasil. Rev Bras Agroecol 7(1):132–138

    Google Scholar 

  • Souza CM, Baldin ELL, Ribeiro LP et al (2017) Lethal and growth inhibitory activities of neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera. J Pestic Sci 90(2):701–709

    CrossRef  Google Scholar 

  • Stoll A, Squeo FA (2012) Latin American plant sciences: from early naturalists to modern science. Plant Ecol Divers 5(2):147–151

    CrossRef  Google Scholar 

  • Tavares WS, Cruz I, Petacci F et al (2009) Potential use of Asteraceae extracts to control Spodoptera frugiperda (Lepidoptera: Noctuidae) and selectivity to their parasitoids Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) and Telenomus remus (Hymenoptera: Scelionidae). Ind Crop Prod 30(3):384–388

    CrossRef  Google Scholar 

  • Turchen LM, Piton LP, Dall’Oglio EL et al (2016) Toxicity of Piper aduncum (Piperaceae) essential oil against Euschistus heros (F.) (Hemiptera: Pentatomidae) and non-effect on egg parasitoids. Neotrop Entomol 45(5):604–611

    CAS  PubMed  CrossRef  Google Scholar 

  • Verbel JO, Ballestas IT, Gallardo KC et al (2013) Essential oils applied to the food act as repellents toward Tribolium castaneum. J Stored Prod Res 55:145–147

    CrossRef  Google Scholar 

  • Volpe HX, Fazolin M, Garcia RB et al (2016) Efficacy of essential oil of Piper aduncum against nymphs and adults of Diaphorina citri. Pest Manag Sci 72(6):1242–1249

    CAS  PubMed  CrossRef  Google Scholar 

  • War AR, Paulraj MG, Ahmad T et al (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(1):1306–1320

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Werdin-González JO, Laumann RA, Silveira S et al (2013) Lethal and sublethal effects of four essential oils on the egg parasitoids Trissolcus basalis. Chemosphere 92(5):608–615

    PubMed  CrossRef  CAS  Google Scholar 

  • Wink M (1993) Production and application of phytochemicals from an agricultural perspective. In: Van Beek TA, Breteler H (eds) Phytochemistry and agriculture. Clarendon Press, Oxford, pp 171–213

    Google Scholar 

  • Yazdani D, Tan YH, Zainal AMA et al (2011) A review on bioactive compounds isolated from plants against plant pathogenic fungi. J Med Plant Res 5(16):6584–6589

    Google Scholar 

  • Yu SJ (2014) The toxicology and biochemistry of insecticides. CRC Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejane Santos Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Alves, D.S., Ascari, J. (2019). Use of Natural Chemical Products for Pest Control. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_38

Download citation