Skip to main content

Plant Diseases

  • 676 Accesses

Abstract

The biological control of plant diseases is based on the use of microorganisms that act directly or indirectly against the pathogen. There has been an increasing demand for biocontrol-based strategies of plant disease management; and, for all plant niches, there have been reports on microbial species that play a role in biocontrol. Some species are commercially available to growers worldwide to prevent the disease onset. For the biocontrol of plant diseases, microorganisms act as parasites of the pathogens’ resting structures, such as sclerotia of Sclerotiania sclerotiorum and eggs and/or juveniles of nematodes Meloidogyne spp. Other microorganisms produce antibiotic compounds that protect the plant tissue, such as the plant growth-promoting rhizobacteria that colonize plant roots and release antibiotics that tackle damping-off-causing pathogens. Some agents consume free nutrients on the plant and scavenge them from the pathogen; for instance, some yeasts protect fruits from postharvest infection caused by Botrytis cinerea. Upon colonization of the plant tissue, receptors from the cell membrane perceive the microbial colonization and trigger an induced resistance that result in broad-spectrum plant protection. Actually, most of the largely used biocontrol strategies combine more than one mode of action, and rarely they have been reported as exercising a selection pressure; in other words, they ensure durable and reliable plant protection against diseases. In this chapter, we address the concepts of biological control of plant diseases, the most important microorganisms with such role, and the strategies growers can follow to adopt integrated crop management.

Keywords

  • Biocontrol
  • Hyperparasite
  • Antagonist
  • Suppressiveness

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_36
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 36.1

References

  • Abreu LM, Moreira GM, Ferreira D et al (2014) Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry. Fungal Biol 118(12):1004–1012

    CAS  PubMed  CrossRef  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, Burlington

    Google Scholar 

  • Agrofit (2017). http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 10 Oct 2017

  • Alabouvette C, Lemanceau P, Steinberg C (1993) Recent advances in the biological control of Fusarium wilts. Pest Manag Sci 37:365–373

    CrossRef  Google Scholar 

  • Anagnostakis SL (1982) Biological control of chestnut blight. Science 215(4532):466–471

    CAS  PubMed  CrossRef  Google Scholar 

  • Atehnkeng J, Ojiambo PS, Donner M et al (2008) Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int J Food Microbiol 122(2):74–84

    PubMed  CrossRef  Google Scholar 

  • Baker K, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company, San Francisco

    Google Scholar 

  • Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205

    CAS  PubMed  CrossRef  Google Scholar 

  • Barron GL (2003) Predatory fungi, wood decay, and the carbon cycle. Biodiversitas 4(1):3–9

    CrossRef  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    CAS  CrossRef  Google Scholar 

  • Bettiol W, Ghini R (2009) Impactos das mudanças climáticas sobre o controle biológico de doenças de plantas. In: Bettiol W, Morandi MAR (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 29–48

    Google Scholar 

  • Bettiol W, Rivera MC, Mondino P et al (2014) Control biológico de enfermedades de plantas en América Latina y el Caribe. Embrapa Meio Ambiente, Jaguariúna

    Google Scholar 

  • Biocomes (2017). www.biocomes.eu. Accessed 10 Oct 2017

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, Michigan

    Google Scholar 

  • Chakraborty S (1983) Population dynamics of amoebae in soils suppressive and non-suppressive to wheat take-all. Soil Biol Biochem 15(6):661–664

    CrossRef  Google Scholar 

  • Chalfoun SM, Angélico CL, Pimenta CJ et al (2013) Viabilidade de Cladosporium cladosporioides no produto “Cladosporin” em diferentes temperaturas. 8° anais do simpósio de pesquisa dos cafés do Brasil, Salvador, 2013. Fapemig, Salvador, pp 1–5

    Google Scholar 

  • Chenthamara K, Druzhinina IS (2016) Ecological genomics of mycotrophic fungi. In: Druzhinina IS, Kubicek CP (eds) Mycota series volume IV: environmental and microbial relationships. Springer, Switzerland, pp 215–246

    CrossRef  Google Scholar 

  • Cook RJ, Rovira A (1976) The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol Biochem 8(4):269–273

    CrossRef  Google Scholar 

  • Costa LSAS, Campos VP, Terra WC et al (2015) Microbiota from Meloidogyne exigua egg masses and evidence for the effect of volatiles on infective juvenile survival. Nematology 17(6):715–724

    CAS  CrossRef  Google Scholar 

  • Dallemole-Giaretta R, Freitas LG, Lopes EA et al (2012) Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Prot 42:102–107

    CrossRef  Google Scholar 

  • Dorner J, Lamb M (2006) Development and commercial use of Afla-guard®, an aflatoxin biocontrol agent. Mycotoxin Res 22(1):33–38

    CAS  PubMed  CrossRef  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    CAS  PubMed  CrossRef  Google Scholar 

  • English-Loeb G, Norton AP, Gadoury DM et al (1999) Control of powdery mildew in wild and cultivated grapes by a tydeid mite. Biol Control 14(2):97–103

    CrossRef  Google Scholar 

  • Freitas LG, Podesta GS, Ferraz S et al (2009) Supressividade de solo a Meloidogyne spp. por Pasteuria penetrans nos Estados do Maranhão e Santa Catarina. In: Bettiol W, Morandi MAR (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 147–166

    Google Scholar 

  • Fulton RW (1986) Practices and precautions in the use of cross protection for plant virus disease control. Annu Rev Phytopathol 24:67–81

    CrossRef  Google Scholar 

  • Gil SV, Haro R, Oddino C et al (2008) Crop management practices in the control of peanut diseases caused by soilborne fungi. Crop Prot 27(1):1–9

    Google Scholar 

  • Hu J, Wei Z, Weidner S et al (2017) Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol Biochem 113:122–129

    CAS  CrossRef  Google Scholar 

  • Jones JB, Vallad GE, Iriarte FB et al (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2(4):208–214

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kanematsu S, Sasaki A, Onoue M et al (2010) Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles. Phytopathology 100(9):922–930

    CAS  PubMed  CrossRef  Google Scholar 

  • Khan Z, Kim YH (2005) The predatory nematode, Mononchoides fortidens (Nematoda: Diplogasterida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted field soil. Biol Control 35(1):78–82

    CrossRef  Google Scholar 

  • Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35(2):370–379

    CrossRef  Google Scholar 

  • Köhl J, Postma J, Nicot P et al (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57(1):1–12

    CrossRef  Google Scholar 

  • Köhl J, Scheer C, Holb IJ et al (2015) Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Dis 99(4):535–543

    PubMed  CrossRef  CAS  Google Scholar 

  • Lacey LA, Frutos R, Kaya H et al (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21(3):230–248

    CrossRef  Google Scholar 

  • Larriba E, Jaime MD, Nislow C et al (2015) Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J Plant Res 128(4):665–678

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu W, Xie Y, Xue J et al (2011) Ultrastructural and cytochemical characterization of brown soft scale Coccus hesperidum (Hemiptera: Coccidae) infected by the Lecanicillium lecanii (Ascomycota: Hypocreales). Micron 42(1):71–79

    CAS  PubMed  CrossRef  Google Scholar 

  • Lorito M, Woo SL, Harman GE et al (2010) Translational research on Trichoderma: from’omics to the field. Annu Rev Phytopathol 48:395–417

    CAS  PubMed  CrossRef  Google Scholar 

  • Ma L-J, Van Der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Maffia L, Haddad F, Mizubuti ES (2009) Controle biológico da ferrugem do cafeeiro. In: Bettiol W, Morandi MAR (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 267–675

    Google Scholar 

  • Martins S, Soares A, Medeiros F et al (2015) Contribution of host and environmental factors to the hyperparasitism of coffee rust under field conditions. Australas Plant Pathol 44(6):605–610

    CrossRef  Google Scholar 

  • Medeiros F, Pomella A, Souza J et al (2010) A novel, integrated method for management of witches’ broom disease in Cacao in Bahia, Brazil. Crop Prot 29(7):704–711

    CAS  CrossRef  Google Scholar 

  • Mello S, Frazão H, Silva J (2005) Capacidade germinativa e infectiva de isolados de Dicyma pulvinata antagônicos a Microcyclus ulei mantidos em coleção de cultura. Agrociencia 9(2):421–426

    Google Scholar 

  • Melo DF, Mello SCM, Mattos CRR et al (2008) Compatibilidade de Dicyma pulvinata com defensivos agrícolas e eficiência do biocontrole do mal-das-folhas da seringueira em campo. Pesq Agropec Bras 43(2):179–185

    CrossRef  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    CAS  PubMed  CrossRef  Google Scholar 

  • Mendes R, Kruijt M, Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    CAS  PubMed  CrossRef  Google Scholar 

  • Monteiro TS, Lopes EA, Evans HC et al (2017) Interactions between Pochonia chlamydosporia and nematodes. In: Lopez RH, Llorca LVL (eds) Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health. Springer, Switzerland, pp 77–96

    CrossRef  Google Scholar 

  • Morandi MA, Sutton JC, Maffia LA (2000) Relationships of aphid and mite infestations to control of Botrytis cinerea by Clonostachys rosea in rose (Rosa hybrida) leaves. Phytoparasitica 28(1):55–64

    CrossRef  Google Scholar 

  • Pérez-Torres E, Bernal-Cabrera A, Milanés-Virelles P et al (2018) Eficiencia de Trichoderma harzianum (cepa a-34) y sus filtrados en el control de tres enfermedades fúngicas foliares en arroz. Bioagro 30:17–26

    Google Scholar 

  • Preston J, Dickson D, Maruniak J et al (2003) Pasteuria spp.: systematics and phylogeny of these bacterial parasites of phytopathogenic nematodes. J Nematol 35(2):198–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezende JAM, Pacheco D (1998) Control of papaya ringspot virus-type W in zucchini squash by cross-protection in Brazil. Plant Dis 82(2):171–175

    CAS  PubMed  CrossRef  Google Scholar 

  • Ruark CL, Koenning SR, Davis EL et al (2017) Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses. PLoS One 12(1):e0171514

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Samuels G, Pardo-Schultheiss R, Hebbar K et al (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104(6):760–764

    CrossRef  Google Scholar 

  • Spencer D, Atkey P (1981) Parasitic effects of Verticillium lecanii on two rust fungi. Trans Br Mycol Soc 77(3):535–542

    CrossRef  Google Scholar 

  • Stefanova M (2007) Desarrollo, alcances y retos del biocontrol de fitopatógenos en Cuba. Summa Phytopathol 33:104–160

    Google Scholar 

  • Sudo S (1989) Biocontrole de Catacauma torrendiella e Coccostroma palmicola, agentes causadores da lixa preta do coqueiro. In: 3ª reunião brasileira sobre controle biológico de doenças de plantas, USP/Embrapa, Piracicaba, 1989

    Google Scholar 

  • Terra WC, Campos VP, Pedroso MP et al (2017) Volatile molecules of Fusarium oxysporum strain 21 are retained in water and control Meloidogyne incognita. Biol Control 112:34–40

    CAS  CrossRef  Google Scholar 

  • Van Lenteren JC, Bolckmans K, Köhl J et al (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63(1):39–59

    CrossRef  Google Scholar 

  • Vandermeer J, Perfecto I, Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol 58(4):636–641

    CrossRef  Google Scholar 

  • Weller DM, Howie WJ, Cook RJ (1988) Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology 78:1094–1100

    CrossRef  Google Scholar 

  • Whipps J, Sreenivasaprasad S, Muthumeenakshi S et al (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330

    CrossRef  Google Scholar 

  • Yanet-Suárez L, Cabrales CP (2016) Identificación de especies de cepas nativas de Trichoderma sp. y Bacillus sp. y evaluación de su potencial antagonista in vitro frente al hongo fitopatógeno nativo Moniliophthora roreri en el departamento de Norte de Santander. Respuestas 13(1):45–56

    Google Scholar 

  • Zeng LM, Zhang J, Han YC et al (2014) Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum. Environ Microbiol 16(8):2591–2610

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Henrique Vasconcelos de Medeiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

de Medeiros, F.H.V., da Silva, J.C.P. (2019). Plant Diseases. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_36

Download citation