Abreu LM, Moreira GM, Ferreira D et al (2014) Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry. Fungal Biol 118(12):1004–1012
CAS
PubMed
CrossRef
Google Scholar
Agrios GN (2005) Plant pathology. Elsevier Academic Press, Burlington
Google Scholar
Agrofit (2017). http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 10 Oct 2017
Alabouvette C, Lemanceau P, Steinberg C (1993) Recent advances in the biological control of Fusarium wilts. Pest Manag Sci 37:365–373
CrossRef
Google Scholar
Anagnostakis SL (1982) Biological control of chestnut blight. Science 215(4532):466–471
CAS
PubMed
CrossRef
Google Scholar
Atehnkeng J, Ojiambo PS, Donner M et al (2008) Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int J Food Microbiol 122(2):74–84
PubMed
CrossRef
Google Scholar
Baker K, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company, San Francisco
Google Scholar
Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205
CAS
PubMed
CrossRef
Google Scholar
Barron GL (2003) Predatory fungi, wood decay, and the carbon cycle. Biodiversitas 4(1):3–9
CrossRef
Google Scholar
Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26
CAS
CrossRef
Google Scholar
Bettiol W, Ghini R (2009) Impactos das mudanças climáticas sobre o controle biológico de doenças de plantas. In: Bettiol W, Morandi MAR (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 29–48
Google Scholar
Bettiol W, Rivera MC, Mondino P et al (2014) Control biológico de enfermedades de plantas en América Latina y el Caribe. Embrapa Meio Ambiente, Jaguariúna
Google Scholar
Biocomes (2017). www.biocomes.eu. Accessed 10 Oct 2017
Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, Michigan
Google Scholar
Chakraborty S (1983) Population dynamics of amoebae in soils suppressive and non-suppressive to wheat take-all. Soil Biol Biochem 15(6):661–664
CrossRef
Google Scholar
Chalfoun SM, Angélico CL, Pimenta CJ et al (2013) Viabilidade de Cladosporium cladosporioides no produto “Cladosporin” em diferentes temperaturas. 8° anais do simpósio de pesquisa dos cafés do Brasil, Salvador, 2013. Fapemig, Salvador, pp 1–5
Google Scholar
Chenthamara K, Druzhinina IS (2016) Ecological genomics of mycotrophic fungi. In: Druzhinina IS, Kubicek CP (eds) Mycota series volume IV: environmental and microbial relationships. Springer, Switzerland, pp 215–246
CrossRef
Google Scholar
Cook RJ, Rovira A (1976) The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol Biochem 8(4):269–273
CrossRef
Google Scholar
Costa LSAS, Campos VP, Terra WC et al (2015) Microbiota from Meloidogyne exigua egg masses and evidence for the effect of volatiles on infective juvenile survival. Nematology 17(6):715–724
CAS
CrossRef
Google Scholar
Dallemole-Giaretta R, Freitas LG, Lopes EA et al (2012) Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Prot 42:102–107
CrossRef
Google Scholar
Dorner J, Lamb M (2006) Development and commercial use of Afla-guard®, an aflatoxin biocontrol agent. Mycotoxin Res 22(1):33–38
CAS
PubMed
CrossRef
Google Scholar
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759
CAS
PubMed
CrossRef
Google Scholar
English-Loeb G, Norton AP, Gadoury DM et al (1999) Control of powdery mildew in wild and cultivated grapes by a tydeid mite. Biol Control 14(2):97–103
CrossRef
Google Scholar
Freitas LG, Podesta GS, Ferraz S et al (2009) Supressividade de solo a Meloidogyne spp. por Pasteuria penetrans nos Estados do Maranhão e Santa Catarina. In: Bettiol W, Morandi MAR (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 147–166
Google Scholar
Fulton RW (1986) Practices and precautions in the use of cross protection for plant virus disease control. Annu Rev Phytopathol 24:67–81
CrossRef
Google Scholar
Gil SV, Haro R, Oddino C et al (2008) Crop management practices in the control of peanut diseases caused by soilborne fungi. Crop Prot 27(1):1–9
Google Scholar
Hu J, Wei Z, Weidner S et al (2017) Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol Biochem 113:122–129
CAS
CrossRef
Google Scholar
Jones JB, Vallad GE, Iriarte FB et al (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2(4):208–214
PubMed
PubMed Central
CrossRef
Google Scholar
Kanematsu S, Sasaki A, Onoue M et al (2010) Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles. Phytopathology 100(9):922–930
CAS
PubMed
CrossRef
Google Scholar
Khan Z, Kim YH (2005) The predatory nematode, Mononchoides fortidens (Nematoda: Diplogasterida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted field soil. Biol Control 35(1):78–82
CrossRef
Google Scholar
Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35(2):370–379
CrossRef
Google Scholar
Köhl J, Postma J, Nicot P et al (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57(1):1–12
CrossRef
Google Scholar
Köhl J, Scheer C, Holb IJ et al (2015) Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Dis 99(4):535–543
PubMed
CrossRef
CAS
Google Scholar
Lacey LA, Frutos R, Kaya H et al (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21(3):230–248
CrossRef
Google Scholar
Larriba E, Jaime MD, Nislow C et al (2015) Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J Plant Res 128(4):665–678
CAS
PubMed
CrossRef
Google Scholar
Liu W, Xie Y, Xue J et al (2011) Ultrastructural and cytochemical characterization of brown soft scale Coccus hesperidum (Hemiptera: Coccidae) infected by the Lecanicillium lecanii (Ascomycota: Hypocreales). Micron 42(1):71–79
CAS
PubMed
CrossRef
Google Scholar
Lorito M, Woo SL, Harman GE et al (2010) Translational research on Trichoderma: from’omics to the field. Annu Rev Phytopathol 48:395–417
CAS
PubMed
CrossRef
Google Scholar
Ma L-J, Van Der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Maffia L, Haddad F, Mizubuti ES (2009) Controle biológico da ferrugem do cafeeiro. In: Bettiol W, Morandi MAR (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 267–675
Google Scholar
Martins S, Soares A, Medeiros F et al (2015) Contribution of host and environmental factors to the hyperparasitism of coffee rust under field conditions. Australas Plant Pathol 44(6):605–610
CrossRef
Google Scholar
Medeiros F, Pomella A, Souza J et al (2010) A novel, integrated method for management of witches’ broom disease in Cacao in Bahia, Brazil. Crop Prot 29(7):704–711
CAS
CrossRef
Google Scholar
Mello S, Frazão H, Silva J (2005) Capacidade germinativa e infectiva de isolados de Dicyma pulvinata antagônicos a Microcyclus ulei mantidos em coleção de cultura. Agrociencia 9(2):421–426
Google Scholar
Melo DF, Mello SCM, Mattos CRR et al (2008) Compatibilidade de Dicyma pulvinata com defensivos agrícolas e eficiência do biocontrole do mal-das-folhas da seringueira em campo. Pesq Agropec Bras 43(2):179–185
CrossRef
Google Scholar
Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663
CAS
PubMed
CrossRef
Google Scholar
Mendes R, Kruijt M, Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100
CAS
PubMed
CrossRef
Google Scholar
Monteiro TS, Lopes EA, Evans HC et al (2017) Interactions between Pochonia chlamydosporia and nematodes. In: Lopez RH, Llorca LVL (eds) Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health. Springer, Switzerland, pp 77–96
CrossRef
Google Scholar
Morandi MA, Sutton JC, Maffia LA (2000) Relationships of aphid and mite infestations to control of Botrytis cinerea by Clonostachys rosea in rose (Rosa hybrida) leaves. Phytoparasitica 28(1):55–64
CrossRef
Google Scholar
Pérez-Torres E, Bernal-Cabrera A, Milanés-Virelles P et al (2018) Eficiencia de Trichoderma harzianum (cepa a-34) y sus filtrados en el control de tres enfermedades fúngicas foliares en arroz. Bioagro 30:17–26
Google Scholar
Preston J, Dickson D, Maruniak J et al (2003) Pasteuria spp.: systematics and phylogeny of these bacterial parasites of phytopathogenic nematodes. J Nematol 35(2):198–207
CAS
PubMed
PubMed Central
Google Scholar
Rezende JAM, Pacheco D (1998) Control of papaya ringspot virus-type W in zucchini squash by cross-protection in Brazil. Plant Dis 82(2):171–175
CAS
PubMed
CrossRef
Google Scholar
Ruark CL, Koenning SR, Davis EL et al (2017) Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses. PLoS One 12(1):e0171514
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Samuels G, Pardo-Schultheiss R, Hebbar K et al (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104(6):760–764
CrossRef
Google Scholar
Spencer D, Atkey P (1981) Parasitic effects of Verticillium lecanii on two rust fungi. Trans Br Mycol Soc 77(3):535–542
CrossRef
Google Scholar
Stefanova M (2007) Desarrollo, alcances y retos del biocontrol de fitopatógenos en Cuba. Summa Phytopathol 33:104–160
Google Scholar
Sudo S (1989) Biocontrole de Catacauma torrendiella e Coccostroma palmicola, agentes causadores da lixa preta do coqueiro. In: 3ª reunião brasileira sobre controle biológico de doenças de plantas, USP/Embrapa, Piracicaba, 1989
Google Scholar
Terra WC, Campos VP, Pedroso MP et al (2017) Volatile molecules of Fusarium oxysporum strain 21 are retained in water and control Meloidogyne incognita. Biol Control 112:34–40
CAS
CrossRef
Google Scholar
Van Lenteren JC, Bolckmans K, Köhl J et al (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63(1):39–59
CrossRef
Google Scholar
Vandermeer J, Perfecto I, Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol 58(4):636–641
CrossRef
Google Scholar
Weller DM, Howie WJ, Cook RJ (1988) Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology 78:1094–1100
CrossRef
Google Scholar
Whipps J, Sreenivasaprasad S, Muthumeenakshi S et al (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330
CrossRef
Google Scholar
Yanet-Suárez L, Cabrales CP (2016) Identificación de especies de cepas nativas de Trichoderma sp. y Bacillus sp. y evaluación de su potencial antagonista in vitro frente al hongo fitopatógeno nativo Moniliophthora roreri en el departamento de Norte de Santander. Respuestas 13(1):45–56
Google Scholar
Zeng LM, Zhang J, Han YC et al (2014) Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum. Environ Microbiol 16(8):2591–2610
CAS
PubMed
CrossRef
Google Scholar