Skip to main content

Weeds

Abstract

Weeds can negatively interfere with agricultural and native ecosystems. The use of herbicides is still an important tactic for weed control, but the low efficacy in some agroecosystems and the environmental impact bring about the need for the development of alternative control strategies. In this chapter, we present the results of some ongoing projects considering the biological control of weeds in Brazil. The classical approach focuses on the South American contributions to control alien weeds through the prospection and selection of insects as potential biocontrol agents. The strategies already adopted have different levels of effectiveness and have targeted weeds native to South America, such as water hyacinth, salvinia, tropical soda apple, lantana, Barbados gooseberry, and strawberry guava. Regarding the bioherbicide approach, there are studies with the pathosystems Colletotrichum truncatum × Bidens pilosa and Bipolaris sp., Colletotrichum sp., and Cercospora sp. × Ipomoea spp. The results focus on both the selection of fungi isolates as potential biological control agents and the epidemiological parameters for disease development, to achieve the highest efficiency in the control of these weeds. Moreover, we discuss some constraints aiming at developing these specific mycoherbicides.

Keywords

  • Classical biological control
  • Bioherbicide
  • Phytopathogens
  • Insects
  • Invasive weeds

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_35
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 35.1

References

  • Auld BA (1998) On the social value of biological control of weeds. Int J Soc Econ 25(6/8):1199–1206

    CrossRef  Google Scholar 

  • Barreto RW (2009) Controle biológico de plantas daninhas com fitopatógenos. In: Bettiol W, Morandi MAB (eds) Biocontrole de doenças de plantas: uso e perspectivas. Embrapa Meio Ambiente, Jaguariúna, pp 101–128

    Google Scholar 

  • Borges Neto CL, Pitelli RA (2004) Adjuvantes e herbicidas e a infectividade de Fusarium graminearum, agente potencial de biocontrole de Egeria densa e Egeria naja. Planta Daninha 22:77–83

    CrossRef  Google Scholar 

  • Cabral PHR, Jakelaitis A, Cardoso IS et al (2013) Interferência de plantas daninhas na cultura do sorgo cultivado em safrinha. Pesqui Agropecu Trop 43(3):308–314

    CrossRef  Google Scholar 

  • Charudattan R (2005) Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target? Biol Control 35(3):183–196

    CrossRef  Google Scholar 

  • Charudattan R, Dinoor A (2000) Biological control of weeds using plant pathogens: accomplishment and limitations. Crop Prot 19(8/10):691–695

    CrossRef  Google Scholar 

  • CONSEMA (2012) Resolução Consema n° 08, de 14 de setembro de 2012. Reconhece a Lista Oficial de Espécies Exóticas Invasoras no Estado de Santa Catarina e dá outras providências. DO St Catarina 429:3–6

    Google Scholar 

  • Cousens R, Croft AM (1995) Weed populations and pathogens. Weed Res 40:63–82

    CrossRef  Google Scholar 

  • Cousens R, Mortimer M (2000) Dynamics of weed populations. Cambridge University Press, Cambridge

    Google Scholar 

  • Cronk QCB, Fuller JL (1995) Plant invaders. Chapman and Hall, London

    Google Scholar 

  • DiTomaso JM (2000) Invasive weeds in rangelands: species, impacts, and management. Weed Sci 48(2):255–265

    CAS  CrossRef  Google Scholar 

  • Duke SO (2015) Proving allelopathy in crop–weed interactions. Weed Sci 63(1):121–132

    CrossRef  Google Scholar 

  • Fowler SV, Barreto RW, Dodd S et al (2013) Tradescantia fluminensis, an exotic weed affecting native forest regeneration in New Zealand: ecological surveys, safety tests and releases of four biocontrol agents from Brazil. Biol Control 64(3):323–329

    CrossRef  Google Scholar 

  • Gelmini GA, Victória Filho R, Novo MCSS (2002) Resistência de Bidens subalternans aos herbicidas inibidores da enzima acetolactato sintase utilizados na cultura da soja. Planta Daninha 20(2):319–325

    CrossRef  Google Scholar 

  • Glowka L, Burhenne-Guilman F, Synge H et al (1994) A guide to the convention on biological diversity. IUCN, Gland and Cambridge

    Google Scholar 

  • Guatimosim E, Pinto HJ, Pereira OL et al (2015) Pathogenic mycobiota of the weeds Bidens pilosa and Bidens subalternans. Trop Plant Pathol 40(5):64–83

    CrossRef  Google Scholar 

  • Hallet SG (2005) Where are the bioherbicides. Weed Sci 53(3):404–415

    CrossRef  Google Scholar 

  • Harker KN, O’Donovan JT (2013) Recent weed control, weed management, and integrated weed management. Weed Technol 27(1):1–11

    CrossRef  Google Scholar 

  • Holm L (1991) The world’s worst weeds-distribution and biology. Krieger Publishing Company, Malabar

    Google Scholar 

  • Jackson MA, Schisler DA, Slininger PJ et al (1996) Fermentation strategies for improving the fitness of a bioherbicide. Weed Technol 10(3):645–650

    CrossRef  Google Scholar 

  • Johnson MT (2005) Petition for field release of Tectococcus ovatus (Homoptera: Eriococcidae) for classical biological control of strawberry guava, Psidium cattleianum Sabine (Myrtaceae). Hawaii. http://www.fs.fed.us/psw/topics/ecosystemprocesses/tropical/invasive/. Accessed 2 Nov 2017

  • Julien MH, Griffiths MW (1998) Biological control of weeds. A world catalogue of agents and their target weeds. CABI Publishing, Wallingford

    Google Scholar 

  • Kissmann KG, Groth D (1991) Plantas infestantes e nocivas. Basf Brasileira, São Paulo

    Google Scholar 

  • Macedo DM, Pereira OL, Hora Júnior BT et al (2016) Mycobiota of the weed Tradescantia fluminensis in its native range in Brazil with particular reference to classical biological control. Australas Plant Pathol 45(1):45–56

    CrossRef  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10(3):689–710

    CrossRef  Google Scholar 

  • Madire LG (2013) Biology and host range of Mada polluta, a potential biological control agent of Tecoma stans in South Africa. Biocontrol Sci Technol 23(8):944–955

    CrossRef  Google Scholar 

  • Marrone PG (2014) The market and potential of biopesticides. In: Gross AD, Coats JR, Duke SO et al (eds) Biopesticides: state of the art and future opportunities. ACS Symposium Series. American Chemical Society, Washington, pp 245–258

    Google Scholar 

  • McFadyen REC (1998) Biological control of weeds. Annu Rev Entomol 43:369–393

    CAS  PubMed  CrossRef  Google Scholar 

  • McFadyen REC, Wilson B (1997) A history of biological control of weeds. In: Julien M, White G (eds) Biological control of weeds: theory and practical applications. ACIAR, Canberra, pp 17–22

    Google Scholar 

  • Medina MG, García DE, González ME et al (2009) Variables morfo-estructurales y de calidad de la biomasa de Tithonia diversifolia en la etapa inicial de crecimiento Morpho-structural. Zootec Trop 27(2):121–134

    Google Scholar 

  • Mendes MAS, Silva VL, Dianese JC et al (1998) Fungos em plantas no Brasil. Embrapa-SPI/Embrapa-Cenargen, Brasília

    Google Scholar 

  • Mphephu TE, Olckers T, Simelane DO (2017) The tortoise beetle Physonota maculiventris (Chrysomelidae: Cassidinae) is suitable for release against the weedy Mexican sunflower Tithonia diversifolia (Asteraceae) in South Africa. Biocontrol Sci Technol 27(4):510–524

    CrossRef  Google Scholar 

  • Nechet KL, Halfeld-Vieira BA (2019) Development of Cercospora leaf spot on Ipomoea weed species for biological control. BioControl 64(2):185–195

    CAS  CrossRef  Google Scholar 

  • Nechet KL, Barreto RW, Mizobuti ES (2006) Bipolaris euphorbiae as a biological control agent for wild poinsettia (Euphorbia heterophylla): host-specificity and variability in pathogen and host populations. Biol Control 51(2):259–275

    Google Scholar 

  • Nechet KL, Barreto RW, Vieira BS (2016) Uso dos fungos Sphaceloma poinsettiae e Bipolaris euphorbiae como mico-herbicidas no controle de Euphorbia heterophylla. In: Halfeld-Vieira BA, Marinho-Prado JS, Nechet KL et al (eds) Defensivos agrícolas naturais: uso e perspectivas. Embrapa, Brasília, pp 147–176

    Google Scholar 

  • Owen MDK (2016) Diverse approaches to herbicide-resistant weed management. Weed Sci 64(1):570–584

    CrossRef  Google Scholar 

  • Paterson ID, Hoffmann JH, Klein H et al (2011) Biological control of Cactaceae in South Africa. Afr Entomol 19(2):230–246

    CrossRef  Google Scholar 

  • Paterson ID, Mdodana LA, Mpekula O et al (2014a) A promising biological control agent for the invasive alien plant, Pereskia aculeata Miller (Cactaceae), in South Africa. Biocontrol Sci Technol 24(10):1083–1095

    CrossRef  Google Scholar 

  • Paterson ID, Vitorino MD, Cristo SC et al (2014b) Prioritisation of potential agents for the biological control of the invasive alien weed, Pereskia aculeata (Cactaceae), in South Africa. Biocontrol Sci Technol 24(4):407–425

    CrossRef  Google Scholar 

  • Paynter Q, Fowler SV, Hayes L et al (2015) Factors affecting the cost of weed biocontrol programs in New Zealand. Biol Control 80:119–127

    CrossRef  Google Scholar 

  • Pérez A, Montejo I, Iglesias JM et al (2009) Tithonia diversifolia (Hemsl.) A. Gray. Pastos Forrajes 32:1–15

    Google Scholar 

  • Randall JM (1996) Weed control for the preservation of biological diversity. Weed Technol 10:370–383

    CrossRef  Google Scholar 

  • Reaser JK, Galindo-Leal C, Ziller SR (2005) Visitas indesejadas: a invasão de espécies exóticas. In: Galindo-Leal C, Câmara IG (eds) Mata Atlântica: biodiversidade, ameaças e perspectivas. Fundação SOS Mata Atlântica. Conservação Internacional, Belo Horizonte, São Paulo, pp 390–403

    Google Scholar 

  • Shaw DR (2016) The “wicked” nature of the herbicide resistance problem. Weed Sci 64(1):552–558

    CrossRef  Google Scholar 

  • Silva PV, Monquero PA (2013) Influência da palha no controle químico de plantas daninhas no sistema de cana crua. Rev Bras Herb 12(1):94–103

    Google Scholar 

  • TeBeest DO (1996) Biological control of weeds with plant pathogens and microbial pesticides. Adv Agron 56:115–137

    CrossRef  Google Scholar 

  • Vieira BS, Barreto RW (2005) Lewia chlamidosporiformans sp. nov. from Euphorbia heterophylla. Micotaxon 94:245–248

    Google Scholar 

  • Vieira BS, Barreto RW (2010) Liquid culture production of chlamydospores of Lewia chlamidosporiformans (Ascomycota: Pleosporales), a mycoherbicide candidate for wild poinsettia. Australas Plant Pathol 39(2):154–160

    CAS  CrossRef  Google Scholar 

  • Vieira BS, Dias LVSA, Langoni VD et al (2018) Liquid fermentation of Colletotrichum truncatum UFU 280, a potential mycoherbicide for beggartick. Australas Plant Pathol 47(3):277–283

    CrossRef  Google Scholar 

  • Walsh M, Newman P, Powles S (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27(3):431–436

    CrossRef  Google Scholar 

  • Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological control. Ann Appl Biol 77(2):201–211

    CrossRef  Google Scholar 

  • Waterhouse DFW, Norris KR (1987) Biological control Pacific prospects. ACIAR, Canberra

    Google Scholar 

  • Watson AK (1991) The classical approach with plant pathogen. In: TeBeest DO (ed) Microbial control of weeds. Chapman and Hall, New York, pp 3–23

    CrossRef  Google Scholar 

  • Wessels FJ, Cuda JP, Johnson MT et al (2007) Host specificity of Tectococcus ovatus (Hemiptera: Eriococcidae), a potential biological control agent of the invasive strawberry guava, Psidium cattleianum (Myrtales: Myrtaceae), in Florida. Biol Control 52(4):439–449

    Google Scholar 

  • Wheeler GS, McKay F, Vitorino MD et al (2016) Biological control of the Invasive Weed Schinus terebinthifolia (Brazilian Peppertree): a review of the project with an update on the proposed agents. Southwest Nat 15(8):15–34

    CrossRef  Google Scholar 

  • Winston RL, Schwarzländer M, Hinz HL et al (2014) Biological control of weeds: a world catalogue of agents and their target weeds, 5th edn. USDA Forest Service, Morgantown

    Google Scholar 

  • Young SL, Pitla SK, Van Evert FK et al (2017) Moving integrated weed management from low level to a truly integrated and highly specific weed management system using advanced technologies. Weed Res 57(1):1–5

    CrossRef  Google Scholar 

  • Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Braz J Bot 34(3):431–446

    CrossRef  Google Scholar 

  • Zimmermann HG, Moran VC, Hoffmann JH (2009) Invasive cactus species (Cactaceae). In: Muniappan R, Reddy GVP, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, pp 108–129

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kátia de Lima Nechet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nechet, K.d.L., Vitorino, M.D., Vieira, B.S., Halfeld-Vieira, B.d.A. (2019). Weeds. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_35

Download citation