Skip to main content

Interactions of Natural Enemies with Non-cultivated Plants

Abstract

Interactions of non-crop plants with natural enemies are continuous in space and time in the tropics. The advantages of using non-crop plants for habitat manipulation are that they are naturally present in agroecosystems, they grow rapidly and spontaneously, and farmers know them well. The presence of non-crop plants in or around fields affects the abundance of different groups of predators in different ways by providing alternative prey, refuge, nectar, and pollen as complementary resources. For instance, some Coccinellidae species forage on flowers and extrafloral nectaries and use non-crop plants as refuge. Adults of Syrphidae are frequently recorded feeding on nectar and pollen, and Anthocoridae, Neuroptera, and Araneae are also observed exploiting these resources from non-crop plants. To increase and conserve these natural enemies, strips of non-crop plants between crop rows or around the main crop should be maintained. However, the success of this strategy for biological control depends on understanding how plants, herbivores, and natural enemies interact.

Keywords

  • Conservation
  • Biological control
  • Predators
  • Alternative food
  • Tropical agroecosystems
  • Spontaneous plants

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

References

  • Alderweireldt M (1994) Habitat manipulations increasing spider densities in agroecosystems: possibilities for biological control. J Appl Entomol 118(1/5):10–16

    CrossRef  Google Scholar 

  • Altieri MA, Whitcomb WH (1978) The potential use of weeds in manipulation of beneficial insects. HortScience 14:12–18

    Google Scholar 

  • Amaral DSSL (2014) More than weed: non-crop plants, arthropod predators and conservative biological control. Universidade Federal de Viçosa, Tese

    Google Scholar 

  • Amaral DSSL, Venzon M, Duarte MVA et al (2013) Non-crop vegetation associated with chili pepper agroecosystems promote the abundance and survival of aphid predators. Biol Control 64(3):338–346

    CrossRef  Google Scholar 

  • Amaral DSSL, Venzon M, Perez AL et al (2015) Coccinellid interactions mediated by vegetation heterogeneity. Entomol Exp Appl 156(2):160–169

    CrossRef  Google Scholar 

  • Amaral DSSL, Venzon M, Santos HH et al (2016) Non-crop plant communities conserve spider populations in chili pepper agroecosystems. Biol Control 103:69–77

    CrossRef  Google Scholar 

  • Andow DA (1988) Management of weeds for insect manipulation in agroecosystems. In: Altieri MA, Liebman M (eds) Weed management in agroecosystems: ecological approaches. CRC Press, Florida, pp 265–301

    Google Scholar 

  • Bengtsson J (2015) Biological control as an ecosystem service: portioning contributions of nature and human inputs to yield. Ecol Entomol 40(S1):45–55

    CrossRef  Google Scholar 

  • Bianchi F, Booij C, Tscharntke T (2008) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Sci 273(1595):1751–1727

    Google Scholar 

  • Chen LL, Chen SB, You MS (2011) Effects of cover crops on spider communities in tea plantations. Biol Control 59(3):326–335

    CrossRef  Google Scholar 

  • Chiguachi JAM, Martins EF, Amaral DSSL et al (2017) Abundância e diversidade de coccinelídeos em cultivos de pimenta-malagueta com diferentes práticas de manejo de pragas. In: 6° Congresso latino-americano de agroecologia, 10° congresso brasileiro de agroecologia, 6° seminário de agroecologia do Distrito Federal e entorno, ABA, Brasília, 2013

    Google Scholar 

  • Costamagna AC, Landis DA (2011) Lack of strong refuges allows top-down control of soybean aphid by generalist natural enemies. Biol Control 57(3):184–192

    CrossRef  Google Scholar 

  • De La Fuente EB, Perelman S, Ghersa CM (2010) Weed and arthropod communities in soyabean as related to crop productivity and land use in the Rolling Pampa, Argentina. Weed Res 50(6):561–571

    CrossRef  Google Scholar 

  • Denno RF, Lewis D, Gratton C (2005) Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous insect populations. Ann Zool Fenn 42(4):295–311

    Google Scholar 

  • Dornelas M, Moonen AC, Magurran AE et al (2009) Species abundance distributions reveal environmental hetero-geneity in modified landscapes. J Appl Ecol 46(3):666–672

    CrossRef  Google Scholar 

  • Dyer LA, Letourneau DK (1999) Trophic cascades in a complex, terrestrial community. Proc Natl Acad Sci U S A 96(9):5072–5076

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Finke DL, Denno RF (2002) Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83(3):643–652

    CrossRef  Google Scholar 

  • Finke DL, Denno RF (2006) Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149(2):265–275

    PubMed  CrossRef  Google Scholar 

  • Fonseca MM, Lima E, Lemos F et al (2017) Non-crop plant to attract and conserve an aphid predator (Coleoptera: Coccinellidae) in tomato. Biol Control 115:129–134

    CrossRef  Google Scholar 

  • Furtado IP, Moraes GJ, Kreiter S et al (2006) Search for effective natural enemies of Tetranychus evansi in south and southeast Brazil. Exp Appl Acarol 40(3/4):157–174

    PubMed  CrossRef  Google Scholar 

  • Gianoli E, Ramos I, Alfaro-Tapia A et al (2006) Benefits of a maize–bean–weeds mixed cropping system in Urubamba Valley, Peruvian Andes. Int J Pest Manag 10(4):11–19

    Google Scholar 

  • Gurr GM, Wratten SD, Luna JM (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 4(2):107–116

    CrossRef  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94(879):421–425

    CrossRef  Google Scholar 

  • Holland J, Winder L, Woolley C et al (2004) The spatial dynamics of crop and ground active predatory arthropods and their aphid prey in winter wheat. Bull Entomol Res 94(5):419–431

    CAS  PubMed  CrossRef  Google Scholar 

  • Ives AR, Cardinale BJ, Snyder WE (2005) A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecol Lett 8(1):102–116

    CrossRef  Google Scholar 

  • Jonsson M, Wratten SD, Landis DA et al (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45(2):172–175

    CrossRef  Google Scholar 

  • Landis D, Wratten S, Gurr G (2000) Habitat management to conserve natural en-emies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    CAS  PubMed  CrossRef  Google Scholar 

  • Landis DA (2017) Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl Ecol 18:1–12

    CrossRef  Google Scholar 

  • Langellotto GA, Denno RF (2006) Refuge from cannibalism in complex- structured habitats: implications for the accumulation of invertebrate predators. Ecol Entomol 31(6):575–581

    CrossRef  Google Scholar 

  • Leather S, Cooke R, Fellowes M et al (1999) Distribution and abundance of ladybirds (Coleoptera: Coccinellidae) in non-crop habitats. Eur J Entomol 96(1):23–27

    Google Scholar 

  • Letourneau DK, Armbrecht I, Rivera BS et al (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21(1):9–21

    PubMed  CrossRef  Google Scholar 

  • Liljesthröm G, Minervino E, Castro D et al (2002) The spider community in soybean cultures in the Buenos Aires province, Argentina. Neotrop Entomol 31(2):197–209

    CrossRef  Google Scholar 

  • Losey JE, Denno RF (1998) Positive predator-predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79(6):2143–2152

    Google Scholar 

  • Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, Dordrecht

    CrossRef  Google Scholar 

  • Macfadyen S, Gibson R, Polaszek A et al (2009) Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol Lett 12(3):229–238

    PubMed  CrossRef  Google Scholar 

  • Marques RV, Sarmento RA, Ferreira VA et al (2014) Alternative food sources to predatory mites (Acari) in a Jatropha curcas (Euphorbiaceae) crops. Rev Colomb Entomol 40(1):74–79

    Google Scholar 

  • Martínez E, Rös M, Bonilla MA et al (2015) Habitat heterogeneity affects plant and arthropod species diversity and turnover in traditional cornfields. PLoS One 10:e0128950

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Maruyama WI, Pinto AS, Gravena S (2002) Parasitoides de ovos de percevejos (Hemiptera: Heteroptera) em plantas daninhas. Ceres 49(284):453–459

    Google Scholar 

  • Mcnett BJ, Rypstra AL (2000) Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecol Entomol 25(4):423–432

    CrossRef  Google Scholar 

  • Nentwig W (1998) Weedy plant species and their beneficial arthropods: potential for manipulation in field crops. In: Pickett CH, Bugg RL (eds) Enhancing biological control: habitat management to promote natural enemies of agricultural pests. UC Press, Berkeley, pp 49–72

    Google Scholar 

  • Norris R, Kogan M (2005) Ecology of interactions between weeds and arthropods. Annu Rev Entomol 50:479–503

    CAS  PubMed  CrossRef  Google Scholar 

  • Norris RF, Kogan M (2000) Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci 48(1):94–158

    CAS  CrossRef  Google Scholar 

  • Nyffeler M, Sterling WL, Dean DA (1994) How spiders make a living. Environ Entomol 23(6):1357–1367

    CrossRef  Google Scholar 

  • Oliveira SA, Souza B, Auad AM et al (2010) Can larval lacewings Chrysoperla externa (Hagen): (Neuroptera, Chrysopidae) be reared on pollen? Rev Bras Entomol 54(4):697–700

    CrossRef  Google Scholar 

  • Park Y, Obrycki J (2004) Spatio-temporal distribution of corn leaf aphids (Homoptera: Aphididae) and lady beetles (Coleoptera: Coccinellidae) in Iowa cornfields. Biol Contro l31(2):210–217

    CrossRef  Google Scholar 

  • Penagos DI, Magallanes R, Valle J et al (2003) Effect of weeds on insect pests of maize and their natural enemies in Southern Mexico. Int J Pest Manag 49(2):155–161

    CrossRef  Google Scholar 

  • Peterson JA, Romero SA, Harwood JD (2010) Pollen interception by linyphiid spiders in a corn agroecosystem: implications for dietary diversification and risk-assessment. Arthropod Plant Interact 4(4):207–217

    CrossRef  Google Scholar 

  • Price PW, Bouton CE, Gross P et al (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    CrossRef  Google Scholar 

  • Robinson JV (1981) The effect of architectural variation in habitat on a spider community:an experimental field study. Ecology 62(1):73–80

    CrossRef  Google Scholar 

  • Robinson KA, Jonsson M, Wratten SD et al (2008) Implications of floral resources for predation by an omnivorous lacewing. Basic Appl Ecol 9(2):172–181

    CrossRef  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diversehabitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43(1):95–124

    CrossRef  Google Scholar 

  • Salgado DN (2014) Plantas espontâneas favorecem crisopídeos em plantio de pimenta malagueta. Dissertação, Universidade Federal de Viçosa

    Google Scholar 

  • Sánchez-Monge A, Retana-Salazar A, Brenes S et al (2011) A contribution to thrips-plant associations records (Insecta: Thysanoptera) in Costa Rica and Central America. Fla Entomol 94(2):330–339

    CrossRef  Google Scholar 

  • Showler A, Greenberg S (2003) Effects of weeds on selected arthropod herbivore and natural enemy populations, and on cotton growth and yield. Environ Entomol 32(1):39–50

    CrossRef  Google Scholar 

  • Sicsú PR, Macedo RH, Sujii ER (2015) Oviposition site selection structures niche portioning among coccinellid species in a tropical ecosystem. Neotrop Entomol 44(5):430–438

    PubMed  CrossRef  Google Scholar 

  • Silva EB, Franco JC, Vasconcelos T et al (2010) Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards. Bull Entomol Res 100(4):489–499

    CAS  PubMed  CrossRef  Google Scholar 

  • Silveira LCP, Bueno VHP, Pierre LSR et al (2003) Plantas cultivadas e invasoras como habitat para predadores do gênero Orius (Wolff) (Heteroptera: Anthocoridae). Bragantia 62(2):261–265

    CrossRef  Google Scholar 

  • Snyder WE, Chang GC, Prasad RP (2005) Conservation biological control: biodiversity influences the effectiveness of predators. In: Barbosa P, Castellanos I (eds) Ecology of predator-prey interactions. Oxford University Press, New York, pp 211–239

    Google Scholar 

  • Stireman JOIII, Dyer LA, Matlock RB (2005) Top-down forces in managed and unmanaged habitats. In: Barbosa P, Castellanos I (eds) Ecology of predator-prey interactions. Oxford University Press, New York, pp 303–322

    Google Scholar 

  • Sunderland K, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95(1):1–13

    CrossRef  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285(5429):893–895

    CAS  PubMed  CrossRef  Google Scholar 

  • Thomson LJ, Hoffmann AA (2013) Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. Biol Control 64(1):57–65

    CrossRef  Google Scholar 

  • Tixier P, Dagneaux D, Mollot G et al (2013) Weeds mediate the level of intraguild predation in arthropod food webs. J Appl Entomol 137(9):702–710

    CAS  CrossRef  Google Scholar 

  • Trujillo-Arriaga J, Altieri MA (1990) A comparison of aphidophagous arthropods on maize polycultures and monocultures, in Central Mexico. Agric Ecosyst Environ 31(4):337–349

    CrossRef  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y et al (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43(3):294–309

    CrossRef  Google Scholar 

  • Uetz GW (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman & Hall, London, pp 325–348

    CrossRef  Google Scholar 

  • Uetz GW, Halaj J, Cady AB (1999) Guild structure of spiders in major crops. J Arachnol 27:270–280

    Google Scholar 

  • United Nations (2017) Report of the special rapporteur on the right for food. UN, Geneva

    Google Scholar 

  • Venzon M, Togni PHB, Amaral DSSL et al (2015) Manejo agroecológico de pragas. Inf Agropecu 36:19–30

    Google Scholar 

  • Weyman GS, Jepson PC (1994) The effect of food supply on the colonization of barley by aerially dispersing spiders (Araneae). Oecologia 100(4):386–390

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilkinson DM, Sherratt TN (2016) Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecol Divers 9:127–140

    CrossRef  Google Scholar 

  • Winder L, Alexander C, Holland J et al (2001) Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecol Lett 4(6):568–576

    CrossRef  Google Scholar 

  • Wyss E (1995) The effects of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol Exp Appl 75(1):43–49

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madelaine Venzon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Venzon, M., Amaral, D.S.S.L., Togni, P.H.B., Chiguachi, J.A.M. (2019). Interactions of Natural Enemies with Non-cultivated Plants. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_2

Download citation