Skip to main content

Interactions of Entomopathogenic Fungus with Entomophagous Insects in Agroecosystems

Abstract

The use of entomopathogenic biopesticides, either as spore suspensions or formulated solid products, can have several collateral effects in agroecosystems. Fungal entomopathogens are typically applied as inundative sprays and are expected to result in short-term pest control, not only against specific pests, but also against species that occupy the same habitat and related species, such as parasitoids, predators, and decomposers (nontarget organisms). This chapter looks into several important aspects to understand the interactions between these microorganisms, mainly entomopathogenic fungus and entomophagous insects in agroecosystems. These interactions have been demonstrated in laboratory studies and they have different negative effects on predators and parasitoids. These results may have been influenced by the research methods used and the characteristics of the entomopathogenic strain, among other factors. To date, there is very little information on the compatible use of endophytic fungal entomopathogens and other groups of natural enemies, particularly parasitoids, in integrated pest management (IPM). Augmentative biological control programs generally consider the interactions between entomophagous and entomopathogenic bioagents; however, little attention is given to interactions with the natural enemies that inhabit the agroecosystems.

Keywords

  • Biological control
  • Biopesticides
  • Predators
  • Parasitoids

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_14
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Acosta N, Rijo E (1997) Compatibilidad de Nodita fermini (Neuroptera: Chrysopidae) con el hongo Verticillium lecanii (Zimm) Viegas y la bacteria Bacillus thuringiensis (Berliner). In: Anais do 3° seminario científico internacional de sanidad vegetal, ALF, Ciudad de La Habana, 23–27 June 1997

    Google Scholar 

  • Acosta N, Rijo E (1998) Compatibilidad de Nodita firmini Navás (Neuroptera: Chrysopidae) con la bacteria Bacillus thuringiensis (Berliner). Fitosanidad 2(3/4):49–52

    Google Scholar 

  • Akutse KS, Fiaboe KKM, van den Berg J et al (2014) Effects of endophyte colonization of Vicia faba (Fabaceae) plants on the life-history of leafminer parasitoids Phaedrotoma scabriventris (Hymenoptera: Braconidae) and Diglyphus isaea (Hymenoptera: Eulophidae). PLoS One 9(10):e109965

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Almaguel L, González N, Fernández-Larrea O et al (1993) Utilización de Bacillus thuringiensis (BT-13) en programas de lucha contra ácaros en cítricos, plátano y papa, informe final de proyecto. Inisav, La Habana

    Google Scholar 

  • Amaro JT, Bueno AF, Pomari-Fernandes A et al (2015) Selectivity of organic products to Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Neotrop Entomol 44:489–497

    CAS  PubMed  CrossRef  Google Scholar 

  • Basibuyuk HH, Quicke DLJ (1999) Grooming behaviours in the Hymenoptera (Insecta): potential phylogenetic significance. Zool J Linnean Soc 125(3):349–382

    CrossRef  Google Scholar 

  • Baverstock J, Roy HE, Pell JK (2010) Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors. BioControl 55(1):89–102

    CrossRef  Google Scholar 

  • Bixby-Brosi AJ, Potter DA (2012) Endophyte-mediated tritrophic interactions between a grass-feeding caterpillar and two parasitoid species with different life histories. Arthropod Plant Interact 6(1):27–34

    CrossRef  Google Scholar 

  • Blanco E (1997) Pesticide compatibility with Telenomus sp. eggs parasitoid of Spodoptera frugiperda (J.E. Smith). In: Anais do 3° seminario científico internacional de sanidad vegetal, ALF, Ciudad de La Habana, 23–27 June 1997

    Google Scholar 

  • Booij CJH, Noorlander J (1992) Farming systems and insect predators. Agric Ecosyst Environ 40(1/4):125–135

    CrossRef  Google Scholar 

  • Broglio-Micheletti SMF, Santos AJN, Pereira-Barros JL (2006) Ação de alguns produtos fitossanitários para adultos de Trichogramma galloi Zucchi, 1988 (Hymenoptera: Trichogrammatidae). Cienc Agrotec 30(6):1051–1055

    CrossRef  Google Scholar 

  • Bultman TL, McNeill MR, Goldson SL (2003) Isolate-dependent impacts of fungal endophytes in a multitrophic interaction. Oikos 102(3):491–496

    CrossRef  Google Scholar 

  • Burkova LA, Krasavina LP (1997) Toxicidad de los biopreparados para los insectos útiles. Phytoma 85:9–10

    Google Scholar 

  • Castiñeiras A, Calderón A (1982) Suceptibilidad de Pheidole megacephala a tres insecticidas microbianos: Dipel, Bitoxibacillin 202 y Beauveria bassiana en condiciones de laboratorio. Cienc Téc Agric Prot Plantas Suppl:61–66

    Google Scholar 

  • Colleen RA, Goettel MS, Roitberg BD et al (2007) Combined effects of the entomopathogenic fungus, Paecilomyces fumosoroseus Apopka-97, and the generalist predator, Dicyphus hesperus, on whitefly populations. BioControl 52(5):669–681

    CrossRef  Google Scholar 

  • Ekbom B, Pickering J (1990) Pathogenic fungal dynamics in a fall population of the blackmargined aphid (Monellia caryella). Entomol Exp Appl 57(1):29–37

    CrossRef  Google Scholar 

  • Farrokhi S, Ashouri A, Shirazi J et al (2010) A comparative study on the functional response of Wolbachia-infected and uninfected forms of the parasitoid wasp Trichogramma brassicae. J Insect Sci 10:167

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ferguson KI, Stiling P (1996) Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108(2):375–379

    PubMed  CrossRef  Google Scholar 

  • Freitas JMS, Clery-Santos MP, Pérez-Maluf R (2007) Abundância de himenópteros parasitoides em diferentes perfis de paisagens. In: Anais do 8° congresso de ecologia do Brasil, Sociedade de Ecologia do Brasil, Caxambu, 23–28 Sept 2007

    Google Scholar 

  • Gathage JW, Lagat ZO, Fiaboe KKM et al (2016) Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. BioControl 61(6):741–753

    CrossRef  Google Scholar 

  • Glare TR, Milner RJ (1989) Ecology of entomopathogenic fungi. In: Arora DK, Ajello L, Mukerji KG (eds) Handbook of applied mycology, humans, animals and insects. Marcel Dekker, New York, pp 547–612

    Google Scholar 

  • Hernández VM, Berlanga AM (1995) Selección de aislamientos de Paecilomyces spp. y su interacción con otros agentes de control de Bemisia tabaci En: Memorias do 16° congreso nacional control biologico, SMCB, Tapachula, 9–10 Nov 1995

    Google Scholar 

  • Inglis GD, Goettel MS, Butt TM et al (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson J, Magan N (eds) Fungi as biocontrol agents. CAB International, UK, pp 23–69

    Google Scholar 

  • Jaber LR, Araj SE (2018) Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol Control 116:53–61

    CrossRef  Google Scholar 

  • Jaber LR, Ownley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45

    CrossRef  Google Scholar 

  • Jaronski ST, Lord J, Rosinska J et al (1998) Vect of Beauveria bassiana-based mycoinsecticide on beneficial insects under field conditions. In: the 1998 Brighton conference: pest & diseases: proceedings of an international conference held at the Brighton Centre and the Stakis Brighton metropole hotel, British Crop Protection Council, Brighton, 16–19 Nov 1998

    Google Scholar 

  • Jiménez J (1996) Lucha biológica contra el cogollero del tabaco Heliothis virescens (F.) (Lepidoptera: Noctuidae) con biopreparados nacionales y comerciales a base de Bacillus thuringiensis Berliner en Cuba. Tesis, Instituto de Investigaciones en Sanidad Vegetal

    Google Scholar 

  • Kaur T, Singh B, Kaur A et al (2015) Endophyte-mediated interactions between cauliflower, the herbivore Spodoptera litura, and the ectoparasitoid Bracon hebetor. Oecologia 179(2):487–494

    PubMed  CrossRef  Google Scholar 

  • Knaak N, Azambuja AO, Lucho APR et al (2009) Interações de Bacillus thuringiensis e o controle de fitopatógenos. Biotecnologia Ciênc Desenvol 38:48–53

    Google Scholar 

  • Magalhães BP, Lord JC, Wraight SP et al (1988) Pathogenicity of Beauveria bassiana and Zoophthora radicans to the coccinellid predators Coleomegilla maculata and Eriopsis connexa. J Invertebr Pathol 52(3):471–473

    CrossRef  Google Scholar 

  • Miura K, Tagami Y (2004) Comparison of life history characters of arrhenotokous and Wolbachia-associated thelytokous Trichogramma kaykai Pinto and Stouthamer (Hymenoptera: Trichogrammatidae). Ann Entomol Soc Am 97(4):765–769

    CrossRef  Google Scholar 

  • Muller CB, Adriaanse ICT, Belshaw R et al (1999) The structure of an aphidparasitoid community. J Anim Ecol 68(2):346–370

    CrossRef  Google Scholar 

  • Oliveira HN, Antigo MR, Carvalho GA et al (2013) Seletividade de inseticidas utilizados na cana-de-açúcar a adultos de Trichogramma galloi Zucchi (Hymenoptera: Trichogrammatidae). Biosci J 29(5):1267–1274

    Google Scholar 

  • Pazini JB, Grützmacher AD, Martins JFS et al (2016) Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum. Pesqui Agropecu Trop 46(3):327–335

    CrossRef  Google Scholar 

  • Polanczyk RA, Grecco ED, Andrade GS et al (2009) Desempenho de Trichogramma spp. (Hymenoptera: Trichogrammatidae) em ovos de Diaphania hyalinata (L.) (Lepidoptera: Pyralidae) tratados com Metarhizium anisopliae e Beauveria bassiana. Arq Inst Biol 76(3):495–499

    Google Scholar 

  • Polanczyk RA, Pratissoli D, Dalvi LP et al (2010) Efeito de Beauveria bassiana (Bals.) Vuillemin e Metarhizium anisopliae (Metsch.) Sorokin nos parâmetros biológicos de Trichogramma atopovirilia Oatman & Platner, 1983 (Hymenoptera: Trichogrammatidae). Cienc Agrotec 34(6):1412–1416

    CrossRef  Google Scholar 

  • Poppy GM (1997) Tritrophic interactions: improving ecological understanding and biological control? Endeavour 21(2):61–64

    CrossRef  Google Scholar 

  • Potrich M, Alves LFA, Lozano ER et al (2017) Potential side effects of the entomopathogenic fungus Metarhizium anisopliae on the egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) under controlled conditions. J Econ Entomol 110(6):2318–2324

    CAS  PubMed  CrossRef  Google Scholar 

  • Repetto M (1992) Evaluación de la toxicidad de los plaguicidas biológicos. Rev Toxicol 9(1):3–9

    Google Scholar 

  • Reyes IC, Enrique A, Chávez B (1995) Efecto de Beauveria bassiana y Metarrhizium anisopliae sobre el parasitoide de la broca del café Cephalonomia stephanoderis. Rev Colomb Entomol 21(4):199–204

    Google Scholar 

  • Rodriguero MS (2013) Wolbachia, una pandemia con posibilidades. Rev Soc Entomol Argent 72(3/4):117–137

    Google Scholar 

  • Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implications for biological control. Biocontrol Sci Tech 10(6):737–752

    CrossRef  Google Scholar 

  • Serra CA, Ortiz M, Ferreras R (1997) Evaluación de los efectos secundarios de insecticidas químicos y biológicos sobre Encarsia transvena (Timberlake). In: 33th proceedings of the Caribbean food crops society, Caribbean Food Crops Society, Puerto Rico, 6–12 July 1997

    Google Scholar 

  • Sosa DR, Ricci JG, Nasca AJ (1985) Efecto de Hirsutela thompsonii Fisher var. thompsonii sobre larvas y adultos de Coccidorhilus citricola Brethes y Lindorus lophanthae (Blaisdell) (Coleoptera: Coccinellidae). CIRPON 3:73–77

    Google Scholar 

  • Sosa-Gómez DR, Pereira RM, Alves SB (1998) Impacto ambiental de entomopatógenos. In: Alves SB (ed) Controle microbiano de insetos. FEALQ, Piracicaba, pp 1075–1096

    Google Scholar 

  • Stouthamer R, Luck RF (1993) Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomol Exp Appl 67(2):183–192

    CrossRef  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Luck RF et al (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361(6407):66–68

    CAS  PubMed  CrossRef  Google Scholar 

  • Vargas MM, Rodríguez DA, Sanabria J et al (1995) Ensayo de diferentes dosis de Aschersonia aleyrodis Webber y parasitismo de Encarsia formosa Gahan en ninfas de tercer y cuarto instar de la mosca blanca de los invernaderos. Rev Colomb Entomol 21(3):159–170

    Google Scholar 

  • Vázquez LL (2002) Efecto de Verticillium lecanii y Beauveria bassiana sobre Cotesia americanus Lepeletier (Hymenoptera: Braconidae) parasitoide de larvas de la primavera de la yuca (Erinnys ello L.). Fitosanidad 6(1):25–27

    Google Scholar 

  • Vázquez LL, Elósegui O, Alfonso J et al (2008) Regulación natural de la broca del café. Agric Org 14:32–34

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M et al (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2(4):149–159

    CrossRef  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    CrossRef  Google Scholar 

  • Vinson SB (1998) The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11(2):79–96

    CrossRef  Google Scholar 

  • Yeo H, Pell JK, Alderson PG et al (2003) Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Manag Sci 59(2):156–165

    CAS  PubMed  CrossRef  Google Scholar 

  • Zaki FN (2011) Side effects of the entomopathogenic fungus Beauveria bassiana on the predator Coccinella undecimpunctata. Arch Phytopathol Plant Protec 44(19):1887–1893

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez, L.L. (2019). Interactions of Entomopathogenic Fungus with Entomophagous Insects in Agroecosystems. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_14

Download citation