Skip to main content

Entomopathogenic Viruses

Abstract

Baculoviruses are arthropod-specific viruses that lack homology with any other virus found in organisms such as plants, animals, fungi, and bacteria. Nucleopolyhedrovirus (NPV) are harmless or unable to replicate in microorganisms, noninsect cell cultures of invertebrates, vertebrate cell culture, non-arthropod plants, and invertebrates. Although the action of the baculoviruses is slower than chemical insecticides, taking more time to kill the target insect, it is considered an important and powerful tool in the integrated pest management of different insect pests, such as Spodoptera frugiperda, Helicoverpa armigera, and Chrysodeixis includens. Some important aspects should be considered for the use and field application of baculovirus products, as well as the storage of different formulations. There are many biological control programs in the world that use baculovirus as biopesticide with positive and reliable results. These programs have expanded as insect pests, such as fall armyworm in African countries and now in India and China, are moving throughout the world.

Keywords

  • Insect pathology
  • Baculovirus
  • NPV
  • Biological control
  • Insect pests

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24733-1_12
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24733-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5

References

  • Adams JR, McClintock JT (1991) Baculoviridae nuclear polyhedrosis viruses Part 1: nuclear polyhedrosis viruses of insects. In: Adams JR, Bonami JR (eds) Atlas of invertebrate viruses. CRC Press, Boca Raton,. Chap 6, pp 87–180

    Google Scholar 

  • Barreto MR, Guimarães CT, Teixeira FF et al (2005) Effect of Baculovirus spodoptera isolates in Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae and their characterization by RAPD. Neotrop Entomol 34(1):67–75

    CrossRef  Google Scholar 

  • Burges HD, Croizier G, Huber J (1980) A review of safety tests on baculoviruses. Entomophaga 25(4):329–340

    CrossRef  Google Scholar 

  • Eberle KE, Wennmann JT, Kleespies RG et al (2012a) Basic techniques in insect virology. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2th edn. Academic Press, San Diego, pp 15–74

    CrossRef  Google Scholar 

  • Eberle KE, Jehle JA, Hüber J (2012b) Microbial control of crop pests using insect viruses. In: Abrol DP, Shankar U (eds) Integrated pest management: principles and practice. CABI Publishing, Wallingford, pp 281–298

    CrossRef  Google Scholar 

  • Entwistle PF (1983) Viruses for insect pest control. e-Spania 26:59–62

    Google Scholar 

  • Fauquet CM, Mayo MA, Maniloff J et al (2005) Virus taxonomy: VIIIth report of the international committee on taxonomy of viruses. Academic Press, Amsterdam

    Google Scholar 

  • Federici BA (1997) Baculovirus pathogenesis. In: Miller LK (ed) The baculoviruses. Springer, Califórnia, pp 33–59

    CrossRef  Google Scholar 

  • Grzywacz D (2017) Basic and applied research: baculovirus. In: Lacey LA (ed) Microbial control of insect and mite pests: from theory to practice. Elsevier, Amsterdam, pp 27–46

    CrossRef  Google Scholar 

  • Harrison R, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega F, Kaya H (eds) Insect pathology. Elsevier, Amsterdam, pp 73–131

    CrossRef  Google Scholar 

  • Harrison RL, Rowley DL, Funk CJ (2016) The complete genome sequence of Plodia interpunctella granulovirus: evidence for horizontal gene transfer and discovery of an unusual inhibitor-of-apoptosis gene. PLoS One 11(7):e0160389

    CrossRef  Google Scholar 

  • Hasse S, Sciocco-Cap A, Romanowski V (2015) Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 7(5):2230–2267

    CrossRef  Google Scholar 

  • Hauschild R, Speiser B, Tamm L (2011) Regulation according to EU directive 91/414: data requirements and procedure compared with regulation practice in other OECD countries. In: Ehlers R-U (ed) Regulation of biological control agents. Springer, Dordrecht, pp 25–77

    CrossRef  Google Scholar 

  • Hawtin RE, Zarkowska T, Arnold K et al (1997) Liquefaction of Autogra- pha californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238(2):243–253

    CAS  CrossRef  Google Scholar 

  • Herniou EA, Olszewski JA, Cory JS et al (2003) The genome sequence and evolution of baculoviruses. Annu Rev Entomol 48:211–234

    CAS  CrossRef  Google Scholar 

  • Herniou EA, Arif BM, Becnel JJ et al (2012) Baculoviridae. In: King AMQ, Adams EB, Carstens EJ et al (eds) Virus taxonomy: classification and nomenclature of viruses. Elsevier Academic Press, San Diego, pp 163–173

    Google Scholar 

  • Ikeda M, Hamajima R, Kobayashi M (2015) Baculoviruses: diversity, evolution and manipulation of insects. J Entomol Sci 18(1):1–20

    CrossRef  Google Scholar 

  • Jaques RP (1967) The persistence of a nuclear polyhedrosis virus in habitat of host insect Trichoplusiani I. Polyhedra deposited on foliage. Can Entomol 99(8):820–829

    CrossRef  Google Scholar 

  • Jehle JA, Blissard GW, Bonning BC et al (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151(7):1257–1266

    CAS  CrossRef  Google Scholar 

  • Katsuma S, Kobayashi J, Koyano Y et al (2012) Baculovirus-encoded protein BV/ODV-E26 determines tissue tropism and virulence in lepidopteran insects. J Virol 86(5):2545–2555

    CAS  CrossRef  Google Scholar 

  • Krieg A, Franz JM, Groner A et al (1980) Safety of entomopathogenic viruses for control of insect pests. Environ Conserve 7:158–160

    CrossRef  Google Scholar 

  • Miele SA, Garavaglia MJ, Belaich MN et al (2011) Baculovirus: molecular insights on their diversity and conservation. Int J EvolBiol 2011:379–424

    Google Scholar 

  • Miller LK (1997) The baculoviruses. Plenum Press, New York

    CrossRef  Google Scholar 

  • Miller L, Ball LA (eds) (1998) The insect viruses. Plenum Press, New York

    Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for the control of Lepidoptera. Annu Rev Entomol 44:257–289

    CAS  CrossRef  Google Scholar 

  • Moscardi F (2007) Development and use of the nucleopolyhedrovirus of the velvetbean caterpillar in soybeans. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Wallingford, pp 344–353

    CrossRef  Google Scholar 

  • Moscardi F, Sosa-Gomez D (2007) Microbial control of insect pests of soybean. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests, 2rd edn. Springer, Dordrecht, pp 411–426

    CrossRef  Google Scholar 

  • Moscardi F, Souza ML, Castro MEB et al (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, Dordrecht, pp 415–445

    CrossRef  Google Scholar 

  • Oliveira JVC, Wolff JLC, Garica-Maruniak A et al (2006) Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus. J GenVirol 87(11):3233–3250

    CAS  Google Scholar 

  • Organization for Economic Co-operation and Development (2002) Consensus document on information used in the assessment of environmental applications involving baculovirus. Organization for Economic Co-operation and Development, Paris. (Series on Harmonization of Regulatory Oversight in Biotechnology, n° 20)

    Google Scholar 

  • Sosa-Goméz DR (2017) Microbial control of soybean pest insects and mites. In: Lacey LA (ed) Microbial control of insect and mite pests: from theory to practice. Elsevier, Amsterdam, pp 199–208

    CrossRef  Google Scholar 

  • Sosa-Gómez DR, Côrrea-Ferreira BS, Hoffmann-Campo CB et al (2014) Manual de identificação de insetos e outros invertebrados da cultura da soja. 3a ed. Embrapa Soja, Londrina

    Google Scholar 

  • Summers MD, Kawanishi CY (eds) (1978) Viral pesticides: present knowledge and potential effects on public and environmental health. U. S. EPA, Washington

    Google Scholar 

  • Thompson CG, Scott DW, Wickman BE (1981) Long-term persistence of the nuclear polyhedrosis virus of the Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), in Forest soil. Environ Entomol 10(2):254–255

    CrossRef  Google Scholar 

  • Valicente FH (1989) Levantamento dos inimigos naturais de Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) em diferentes regiões do estado de Minas Gerais. An Soc Entomol Bras 18(1):119–130

    Google Scholar 

  • Valicente FH, Costa EF (1995) Controle da lagarta do cartucho Spodoptera frugiperda (J.E. Smith) com baculovirus spodoptera, aplicado via água de irrigação. AnSocEntomol Bras 24(1):61–67

    Google Scholar 

  • Valicente FH, Peixoto MJVVD, Paiva E, Kitajima EW (1989) Identificação e purificação de um vírus da poliedrose nuclear da lagarta Spodoptera frugiperda (J.E. Smith 1797) (Lepidoptera: Noctuidae). An Soc Entomol Bras 18:71–81

    Google Scholar 

  • Valicente FH, Tuelher ES, Pena RC et al (2007a) The use of Baculovirus to control fall armyworm, Spodoptera frugiperda, in Brazil. In: Proceedings of the 16th international plant protection congress, British Crop Protection Council, Alton, 15–18 Oct 2007

    Google Scholar 

  • Valicente FH, Tuelher ES, Pena RC et al (2007b) The use of Baculovirus to control fall armyworm, Spodoptera frugiperda, in Brazil. In: Proceedings of the 40th annual meeting of the society for invertebrate pathology, University of Warwick, Quebec, 12–16 Aug 2007

    Google Scholar 

  • Valicente FH, Tuelher ES, Paiva CEC et al (2008) New baculovirus isolate that does not cause the liquefaction of the integument in Spodoptera frugiperda dead larvae. Rev Bras Milho Sorgo 7(1):77–82

    CrossRef  Google Scholar 

  • Valicente FH, Tuelher ES, Pena RC et al (2013) Cannibalism and virus production in Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae fed with two leaf substrates inoculated with Baculovirus spodoptera. Neotrop Entomol 42(2):191–199

    CAS  CrossRef  Google Scholar 

  • Van Oers MM, Vlak JM (2007) Baculovirus genomics. Curr Drug Targets 8(10):1051–1068

    CrossRef  Google Scholar 

  • Vieira CM, Tuelher ES, Valicente FH et al (2012) Characterization of a Spodoptera frugiperda multiple nucleopolyhedrovirus isolate that does not liquefy the integument of infected larvae. J Invertebr Pathol 111(2):189–192

    CAS  CrossRef  Google Scholar 

  • Wolff JLC, Valicente FH, Martins R et al (2008) Analysis of the genome of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV-19) and of the high genomic heterogeneity in group II nucleopolyhedroviruses. J Gen Virol 89(5):1202–1211

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Hercos Valicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Valicente, F.H. (2019). Entomopathogenic Viruses. In: Souza, B., Vázquez, L., Marucci, R. (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-24733-1_12

Download citation