Skip to main content

Lung Cancer Biomarkers in Proximal Fluids

  • Chapter
  • First Online:
Cancer Biomarkers in Body Fluids
  • 467 Accesses

Abstract

Key Topics

  • The global burden of lung cancer (LnCa)

  • Unique features of lung proximal fluids

  • LnCa biomarkers in lung proximal fluids

  • Biomarkers in differential diagnosis of malignant pleural effusion

  • Commercial LnCa products using proximal fluids

Key Points

  • The global burden of LnCa remains unresolved, as it was the highest in both incidence and mortality in 2018.

  • Apart from bronchial fluid acquisition that involves a minimally invasive procedure, the other lung proximal fluids (sputum and exhaled breath condensate) are obtained virtually noninvasively.

  • The molecular genetic alterations in primary LnCa tissue are detectable and measurable in lung proximal fluids.

  • Not unexpectedly, a number of companies have developed or are developing technologies for biomarker detection in proximal fluids of various lung diseases including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horvath I. The exhaled biomarker puzzle: bacteria play their card in the exhaled nitric oxide-exhaled breath condensate nitrite game. Thorax. 2005;60:179–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mutlu GM, Garey KW, Robbins RA, et al. Collection and analysis of exhaled breath condensate in humans. Am J Respir Crit Care Med. 2001;164:731–7.

    Article  CAS  PubMed  Google Scholar 

  3. Balbi B, Pignatti P, Corradi M, et al. Bronchoalveolar lavage, sputum and exhaled clinically relevant inflammatory markers: values in healthy adults. Eur Respir J. 2007;30:769–81.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson AS, Sandrini A, Campbell C, et al. Comparison of biomarkers in exhaled breath condensate and bronchoalveolar lavage. Am J Respir Crit Care Med. 2007;175:222–7.

    Article  CAS  PubMed  Google Scholar 

  5. Sinha A, Yadav AK, Chakraborty S, et al. Exosome-enclosed microRNAs in exhaled breath hold potential for biomarker discovery in patients with pulmonary diseases. J Allergy Clin Immunol. 2013;132:219–22.

    Article  CAS  PubMed  Google Scholar 

  6. Ng AW, Bidani A, Heming TA. Innate host defense of the lung: effects of lung-lining fluid pH. Lung. 2004;182:297–317.

    Article  PubMed  Google Scholar 

  7. Horvath I, Hunt J, Barnes PJ, et al. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J. 2005;26:523–48.

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmeyer F, Weiss T, Lehnert M, et al. Increased metal concentrations in exhaled breath condensate of industrial welders. J Environ Monit. 2011;13:212–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmeyer F, Raulf-Heimsoth M, Harth V, et al. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices. BMC Pulm Med. 2009;9:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Czebe K, Barta I, Antus B, et al. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations. Respir Med. 2008;102:720–5.

    Article  PubMed  Google Scholar 

  11. Romero PV, Rodriguez B, Martinez S, et al. Analysis of oxidative stress in exhaled breath condensate from patients with severe pulmonary infections. Arch Bronconeumol. 2006;42:113–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mutti A, Corradi M, Goldoni M, et al. Exhaled metallic elements and serum pneumoproteins in asymptomatic smokers and patients with COPD or asthma. Chest. 2006;129:1288–97.

    Article  CAS  PubMed  Google Scholar 

  13. Moeller A, Franklin P, Hall GL, et al. Measuring exhaled breath condensates in infants. Pediatr Pulmonol. 2006;41:184–7.

    Article  PubMed  Google Scholar 

  14. Rosias PP, Robroeks CM, van de Kant KD, et al. Feasibility of a new method to collect exhaled breath condensate in pre-school children. Pediatr Allergy Immunol. 2010;21:e235–44.

    Article  PubMed  Google Scholar 

  15. Carter SR, Davis CS, Kovacs EJ. Exhaled breath condensate collection in the mechanically ventilated patient. Respir Med. 2012;106:601–13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gessner C, Dihazi H, Brettschneider S, et al. Presence of cytokeratins in exhaled breath condensate of mechanical ventilated patients. Respir Med. 2008;102:299–306.

    Article  PubMed  Google Scholar 

  17. Vyas A, Zhang Q, Gunaratne S, et al. The effect of temperature on exhaled breath condensate collection. J Breath Res. 2012;036002:6.

    Google Scholar 

  18. Goldoni M, Caglieri A, Andreoli R, et al. Influence of condensation temperature on selected exhaled breath parameters. BMC Pulm Med. 2005;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vaughan J, Ngamtrakulpanit L, Pajewski TN, et al. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur Respir J. 2003;22:889–94.

    Article  CAS  PubMed  Google Scholar 

  20. Eberini I, Gianazza E, Pastorino U, Sirtori C. Assessment of individual lung cancer risk by the proteomic analysis of exhaled breath condensate. Expert Opin Med Diagn. 2008;2:1309–15.

    Article  CAS  PubMed  Google Scholar 

  21. Chapman EA, Thomas PS, Yates DH. Breath analysis in asbestos-related disorders: a review of the literature and potential future applications. J Breath Res. 2010;4:034001.

    Article  PubMed  CAS  Google Scholar 

  22. Huttmann EM, Greulich T, Hattesohl A, et al. Comparison of two devices and two breathing patterns for exhaled breath condensate sampling. PLoS One. 2011;6:e27467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Borrill ZL, Roy K, Vessey RS, et al. Non-invasive biomarkers and pulmonary function in smokers. Int J Chron Obstruct Pulmon Dis. 2008;3:171–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu J, Conrad DH, Chow S, et al. Collection devices influence the constituents of exhaled breath condensate. Eur Respir J. 2007;30:807–8.

    Article  CAS  PubMed  Google Scholar 

  25. Carraro S, Corradi M, Zanconato S, et al. Exhaled breath condensate cysteinyl leukotrienes are increased in children with exercise-induced bronchoconstriction. J Allergy Clin Immunol. 2005;115:764–70.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmadzai H, Huang S, Hettiarachchi R, et al. Exhaled breath condensate: a comprehensive update. Clin Chem Lab Med. 2013;51:1343–61.

    Article  CAS  PubMed  Google Scholar 

  27. Bondesson E, Jansson LT, Bengtsson T, Wollmer P. Exhaled breath condensate-site and mechanisms of formation. J Breath Res. 2009;3:016005.

    Article  PubMed  CAS  Google Scholar 

  28. Montuschi P. Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Dis. 2007;1:5–23.

    Article  PubMed  Google Scholar 

  29. Vass G, Huszar E, Barat E, et al. Comparison of nasal and oral inhalation during exhaled breath condensate collection. Am J Respir Crit Care Med. 2003;167:850–5.

    Article  PubMed  Google Scholar 

  30. Zetterquist W, Marteus H, Kalm-Stephens P, et al. Oral bacteria--the missing link to ambiguous findings of exhaled nitrogen oxides in cystic fibrosis. Respir Med. 2009;103:187–93.

    Article  PubMed  Google Scholar 

  31. Effros RM, Hoagland KW, Bosbous M, et al. Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med. 2002;165:663–9.

    Article  PubMed  Google Scholar 

  32. Griese M, Noss J, von Bredow C. Protein pattern of exhaled breath condensate and saliva. Proteomics. 2002;2:690–6.

    Article  CAS  PubMed  Google Scholar 

  33. Zweifel M, Rechsteiner T, Hofer M, Boehler A. Detection of pulmonary amylase activity in exhaled breath condensate. J Breath Res. 2013;7:046007.

    Article  CAS  PubMed  Google Scholar 

  34. Rosias PP, Dompeling E, Hendriks HJ, et al. Exhaled breath condensate in children: pearls and pitfalls. Pediatr Allergy Immunol. 2004;15:4–19.

    Article  PubMed  Google Scholar 

  35. Grob NM, Aytekin M, Dweik RA. Biomarkers in exhaled breath condensate: a review of collection, processing and analysis. J Breath Res. 2008;2:037004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gessner C, Scheibe R, Wotzel M, et al. Exhaled breath condensate cytokine patterns in chronic obstructive pulmonary disease. Respir Med. 2005;99:1229–40.

    Article  PubMed  Google Scholar 

  37. Gessner C, Rechner B, Hammerschmidt S, et al. Angiogenic markers in breath condensate identify non-small cell lung cancer. Lung Cancer. 2010;68:177–84.

    Article  CAS  PubMed  Google Scholar 

  38. Konstantinidi EM, Lappas AS, Tzortzi AS, Behrakis PK. Exhaled breath condensate: technical and diagnostic aspects. ScientificWorldJournal. 2015;2015:435160.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Conrad DH, Goyette J, Thomas PS. Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med. 2008;23(Suppl 1):78–84.

    Article  PubMed  Google Scholar 

  40. Robroeks CM, van de Kant KD, Jobsis Q, et al. Exhaled nitric oxide and biomarkers in exhaled breath condensate indicate the presence, severity and control of childhood asthma. Clin Exp Allergy. 2007;37:1303–11.

    Article  CAS  PubMed  Google Scholar 

  41. Belinsky SA, Liechty KC, Gentry FD, et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 2006;66:3338–44.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Lan Q, Shen M, et al. Aberrant gene promoter methylation in sputum from individuals exposed to smoky coal emissions. Anticancer Res. 2008;28:2061–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Ling L, Su H, et al. Aberrant methylation of genes in sputum samples as diagnostic biomarkers for non-small cell lung cancer: a meta-analysis. Asian Pac J Cancer Prev. 2014;15:4467–74.

    Article  PubMed  Google Scholar 

  44. Liu D, Peng H, Sun Q, et al. The indirect efficacy comparison of DNA methylation in sputum for early screening and auxiliary detection of lung cancer: a meta-analysis. Int J Environ Res Public Health. 2017;23:14.

    Google Scholar 

  45. Li R, Todd NW, Qiu Q, et al. Genetic deletions in sputum as diagnostic markers for early detection of stage I non-small cell lung cancer. Clin Cancer Res. 2007;13:482–7.

    Article  CAS  PubMed  Google Scholar 

  46. Qiu Q, Todd NW, Li R, et al. Magnetic enrichment of bronchial epithelial cells from sputum for lung cancer diagnosis. Cancer. 2008;114:275–83.

    Article  PubMed  Google Scholar 

  47. Katz RL, Zaidi TM, Fernandez RL, et al. Automated detection of genetic abnormalities combined with cytology in sputum is a sensitive predictor of lung cancer. Mod Pathol. 2008;21:950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arvanitis DA, Papadakis E, Zafiropoulos A, Spandidos DA. Fractional allele loss is a valuable marker for human lung cancer detection in sputum. Lung Cancer. 2003;40:55–66.

    Article  PubMed  Google Scholar 

  49. Castagnaro A, Marangio E, Verduri A, et al. Microsatellite analysis of induced sputum DNA in patients with lung cancer in heavy smokers and in healthy subjects. Exp Lung Res. 2007;33:289–301.

    Article  CAS  PubMed  Google Scholar 

  50. Hsu HS, Chen TP, Wen CK, et al. Multiple genetic and epigenetic biomarkers for lung cancer detection in cytologically negative sputum and a nested case-control study for risk assessment. J Pathol. 2007;213:412–9.

    Article  CAS  PubMed  Google Scholar 

  51. Wang YC, Lu YP, Tseng RC, et al. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest. 2003;111:887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Destro A, Bianchi P, Alloisio M, et al. K-ras and p16(INK4A)alterations in sputum of NSCLC patients and in heavy asymptomatic chronic smokers. Lung Cancer. 2004;44:23–32.

    Article  CAS  PubMed  Google Scholar 

  53. Somers VA, Pietersen AM, Theunissen PH, Thunnissen FB. Detection of K-ras point mutations in sputum from patients with adenocarcinoma of the lung by point-EXACCT. J Clin Oncol. 1998;16:3061–8.

    Article  CAS  PubMed  Google Scholar 

  54. Keohavong P, Gao WM, Zheng KC, et al. Detection of K-ras and p53 mutations in sputum samples of lung cancer patients using laser capture microdissection microscope and mutation analysis. Anal Biochem. 2004;324:92–9.

    Article  CAS  PubMed  Google Scholar 

  55. Baryshnikova E, Destro A, Infante MV, et al. Molecular alterations in spontaneous sputum of cancer-free heavy smokers: results from a large screening program. Clin Cancer Res. 2008;14:1913–9.

    Article  CAS  PubMed  Google Scholar 

  56. Soda M, Isobe K, Inoue A, et al. A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer. Clin Cancer Res. 2012;18:5682–9.

    Article  CAS  PubMed  Google Scholar 

  57. Boldrini L, Gisfredi S, Ursino S, et al. Mutational analysis in cytological specimens of advanced lung adenocarcinoma: a sensitive method for molecular diagnosis. J Thorac Oncol. 2007;2:1086–90.

    Article  PubMed  Google Scholar 

  58. Takano T, Ohe Y, Tsuta K, et al. Epidermal growth factor receptor mutation detection using high-resolution melting analysis predicts outcomes in patients with advanced non small cell lung cancer treated with gefitinib. Clin Cancer Res. 2007;13:5385–90.

    Article  CAS  PubMed  Google Scholar 

  59. Tanaka T, Matsuoka M, Sutani A, et al. Frequency of and variables associated with the EGFR mutation and its subtypes. Int J Cancer. 2010;126:651–5.

    Article  CAS  PubMed  Google Scholar 

  60. Bonner MR, Shen M, Liu CS, et al. Mitochondrial DNA content and lung cancer risk in Xuan Wei, China. Lung Cancer. 2009;63:331–4.

    Article  PubMed  Google Scholar 

  61. Jheon S, Hyun DS, Lee SC, et al. Lung cancer detection by a RT-nested PCR using MAGE A1--6 common primers. Lung Cancer. 2004;43:29–37.

    Article  PubMed  Google Scholar 

  62. Sun B, Wang H, Wang X, et al. A proliferation-inducing ligand: a new biomarker for non-small cell lung cancer. Exp Lung Res. 2009;35:486–500.

    Article  CAS  PubMed  Google Scholar 

  63. Gyoba J, Shan S, Roa W, Bedard EL. Diagnosing lung cancers through examination of micro-RNA biomarkers in blood, plasma, serum and sputum: a review and summary of current literature. Int J Mol Sci. 2016;17:494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Xie Y, Todd NW, Liu Z, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 2010;67:170–6.

    Article  PubMed  Google Scholar 

  65. Xing L, Todd NW, Yu L, et al. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol. 2010;23:1157–64.

    Article  CAS  PubMed  Google Scholar 

  66. Liao QB, Guo JQ, Zheng XY, et al. Test performance of sputum microRNAs for lung cancer: a meta-analysis. Genet Test Mol Biomarkers. 2014;18:562–7.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, Wang Q, Zhang S. MicroRNAs in sputum specimen as noninvasive biomarkers for the diagnosis of nonsmall cell lung cancer: an updated meta-analysis. Medicine (Baltimore). 2019;98:e14337.

    Article  CAS  Google Scholar 

  68. Chen L, Jin H. MicroRNAs as novel biomarkers in the diagnosis of non-small cell lung cancer: a meta-analysis based on 20 studies. Tumour Biol. 2014;35:9119–29.

    Article  CAS  PubMed  Google Scholar 

  69. Wang H, Wu S, Zhao L, et al. Clinical use of microRNAs as potential non-invasive biomarkers for detecting non-small cell lung cancer: a meta-analysis. Respirology. 2015;20:56–65.

    Article  PubMed  Google Scholar 

  70. Kalomenidis I, Dimakou K, Kolintza A, et al. Sputum carcinoembryonic antigen, neuron-specific enolase and cytokeratin fragment 19 levels in lung cancer diagnosis. Respirology. 2004;9:54–9.

    Article  PubMed  Google Scholar 

  71. Hillas G, Moschos C, Dimakou K, et al. Carcinoembryonic antigen, neuron-specific enolase and cytokeratin fragment 19 (CYFRA 21-1) levels in induced sputum of lung cancer patients. Scand J Clin Lab Invest. 2008;68:542–7.

    Article  CAS  PubMed  Google Scholar 

  72. Pio R, Garcia J, Corrales L, et al. Complement factor H is elevated in bronchoalveolar lavage fluid and sputum from patients with lung cancer. Cancer Epidemiol Biomark Prev. 2010;19:2665–72.

    Article  CAS  Google Scholar 

  73. Konno S, Morishita Y, Fukasawa M, et al. Anthracotic index and DNA methylation status of sputum contents can be used for identifying the population at risk of lung carcinoma. Cancer. 2004;102:348–54.

    Article  CAS  PubMed  Google Scholar 

  74. Lewis PD, Lewis KE, Ghosal R, et al. Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer. 2010;10:640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cao C, Chen ZB, Sun SF, et al. Evaluation of VEGF-C and tumor markers in bronchoalveolar lavage fluid for lung cancer diagnosis. Sci Rep. 2013;3:3473.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cao C, Sun SF, Lv D, et al. Utility of VEGF and sVEGFR-1 in bronchoalveolar lavage fluid for differential diagnosis of primary lung cancer. Asian Pac J Cancer Prev. 2013;14:2443–6.

    Article  PubMed  Google Scholar 

  77. Wang H, Zhang X, Liu X, et al. Diagnostic value of bronchoalveolar lavage fluid and serum tumor markers for lung cancer. J Cancer Res Ther. 2016;12:355–8.

    Article  CAS  PubMed  Google Scholar 

  78. Li J, Chen P, Mao CM, et al. Evaluation of diagnostic value of four tumor markers in bronchoalveolar lavage fluid of peripheral lung cancer. Asia Pac J Clin Oncol. 2014;10:141–8.

    Article  PubMed  Google Scholar 

  79. Zhang S, Zhao YF, Zhang MZ, Wu XL. The diagnostic value of tumor markers in bronchoalveolar lavage fluid for the peripheral pulmonary carcinoma. Clin Respir J. 2017;11:481–8.

    Article  CAS  PubMed  Google Scholar 

  80. Charpidou A, Gkiozos I, Konstantinou M, et al. Bronchial washing levels of vascular endothelial growth factor receptor-2 (VEGFR2) correlate with overall survival in NSCLC patients. Cancer Lett. 2011;304:144–53.

    Article  CAS  PubMed  Google Scholar 

  81. Montilla D, Perez M, Borges L, et al. Soluble human leukocyte antigen-G in the Bronchoalveolar lavage of lung Cancer patients. Arch Bronconeumol. 2016;52:420–4.

    Article  PubMed  Google Scholar 

  82. Naumnik W, Naumnik B, Niklinska W, et al. Clinical implications of hepatocyte growth factor, interleukin-20, and interleukin-22 in serum and bronchoalveolar fluid of patients with non-small cell lung cancer. Adv Exp Med Biol. 2016;952:41–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kontakiotis T, Katsoulis K, Hagizisi O, et al. Bronchoalveolar lavage fluid alteration in antioxidant and inflammatory status in lung cancer patients. Eur J Intern Med. 2011;22:522–6.

    Article  CAS  PubMed  Google Scholar 

  84. Pastor MD, Nogal A, Molina-Pinelo S, et al. Identification of oxidative stress related proteins as biomarkers for lung cancer and chronic obstructive pulmonary disease in bronchoalveolar lavage. Int J Mol Sci. 2013;14:3440–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou JH, Liu GN, Huang SM, et al. Comparative study of protein markers in serum and bronchoalveolar lavage fluid from patients with lung cancer by surface-enhanced laser desorption ionization time of flight mass spectrometry. Zhonghua Jie He He Hu Xi Za Zhi. 2011;34:274–7.

    PubMed  Google Scholar 

  86. Li QK, Shah P, Li Y, et al. Glycoproteomic analysis of bronchoalveolar lavage (BAL) fluid identifies tumor-associated glycoproteins from lung adenocarcinoma. J Proteome Res. 2013;12:3689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uchida A, Samukawa T, Kumamoto T, et al. Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma. BMC Pulm Med. 2017;17:195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ortea I, Rodriguez-Ariza A, Chicano-Galvez E, et al. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. J Proteome. 2016;138:106–14.

    Article  CAS  Google Scholar 

  89. Almatroodi SA, McDonald CF, Collins AL, et al. Quantitative proteomics of bronchoalveolar lavage fluid in lung adenocarcinoma. Cancer Genomics Proteomics. 2015;12:39–48.

    PubMed  Google Scholar 

  90. Biaoxue R, Xiguang C, Hua L, et al. Increased level of annexin A1 in bronchoalveolar lavage fluid as a potential diagnostic indicator for lung cancer. Int J Biol Markers. 2017;32:e132–40.

    Article  PubMed  CAS  Google Scholar 

  91. Carvalho AS, Cuco CM, Lavareda C, et al. Bronchoalveolar lavage proteomics in patients with suspected lung Cancer. Sci Rep. 2017;7:42190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hmmier A, O’Brien ME, Lynch V, et al. Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry. BBA Clin. 2017;7:97–104.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Callejon-Leblic B, Garcia-Barrera T, Gravalos-Guzman J, et al. Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/ gas chromatography mass spectrometry platform. J Proteome. 2016;145:197–206.

    Article  CAS  Google Scholar 

  94. Ajona D, Razquin C, Pastor MD, et al. Elevated levels of the complement activation product C4d in bronchial fluids for the diagnosis of lung cancer. PLoS One. 2015;10:e0119878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Osinska I, Stelmaszczyk-Emmel A, Polubiec-Kownacka M, et al. CD4+/CD25(high)/FoxP3+/CD127- regulatory T cells in bronchoalveolar lavage fluid of lung cancer patients. Hum Immunol. 2016;77:912–5.

    Article  CAS  PubMed  Google Scholar 

  96. Chen L, Li Q, Zhou XD, et al. Increased pro-angiogenic factors, infiltrating neutrophils and CD163(+) macrophages in bronchoalveolar lavage fluid from lung cancer patients. Int Immunopharmacol. 2014;20:74–80.

    Article  PubMed  CAS  Google Scholar 

  97. Pastor MD, Nogal A, Molina-Pinelo S, et al. IL-11 and CCL-1: novel protein diagnostic biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid (BALF). J Thorac Oncol. 2016;11:2183–92.

    Article  PubMed  Google Scholar 

  98. Jakubowska K, Naumnik W, Niklinska W, Chyczewska E. Clinical significance of HMGB-1 and TGF-beta level in serum and BALF of advanced non-small cell lung cancer. Adv Exp Med Biol. 2015;852:49–58.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang C, Yu W, Wang L, et al. DNA methylation analysis of the SHOX2 and RASSF1A panel in bronchoalveolar lavage fluid for lung cancer diagnosis. J Cancer. 2017;8:3585–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Li J, Hu YM, Wang Y, et al. Gene mutation analysis in non-small cell lung cancer patients using bronchoalveolar lavage fluid and tumor tissue as diagnostic markers. Int J Biol Markers. 2014;29:e328–36.

    Article  CAS  PubMed  Google Scholar 

  101. Hur JY, Kim HJ, Lee JS, et al. Extracellular vesicle-derived DNA for performing EGFR genotyping of NSCLC patients. Mol Cancer. 2018;17:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Nakamichi S, Seike M, Miyanaga A, et al. RT-PCR for detecting ALK translocations in cytology samples from lung cancer patients. Anticancer Res. 2017;37:3295–9.

    CAS  PubMed  Google Scholar 

  103. Li J, Chen P, Li XQ, et al. Elevated levels of survivin and livin mRNA in bronchial aspirates as markers to support the diagnosis of lung cancer. Int J Cancer. 2013;132:1098–104.

    Article  CAS  PubMed  Google Scholar 

  104. Rehbein G, Schmidt B, Fleischhacker M. Extracellular microRNAs in bronchoalveolar lavage samples from patients with lung diseases as predictors for lung cancer. Clin Chim Acta. 2015;450:78–82.

    Article  CAS  PubMed  Google Scholar 

  105. Kim JE, Eom JS, Kim WY, et al. Diagnostic value of microRNAs derived from exosomes in bronchoalveolar lavage fluid of early-stage lung adenocarcinoma: a pilot study. Thorac Cancer. 2018;9:911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer. 2016;102:89–95.

    Article  PubMed  Google Scholar 

  107. Gordon SM, Szidon JP, Krotoszynski BK, et al. Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem. 1985;31:1278–82.

    CAS  PubMed  Google Scholar 

  108. Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4:669–73.

    Article  CAS  PubMed  Google Scholar 

  109. Han W, Wang T, Reilly AA, et al. Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients. Respir Res. 2009;10:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Xiao P, Chen JR, Zhou F, et al. Methylation of P16 in exhaled breath condensate for diagnosis of non-small cell lung cancer. Lung Cancer. 2014;83:56–60.

    Article  PubMed  Google Scholar 

  111. Khyshiktyev BS, Khyshiktueva NA, Ivanov VN, et al. Diagnostic value of investigating exhaled air condensate in lung cancer. Vopr Onkol. 1994;40:161–4.

    CAS  PubMed  Google Scholar 

  112. Gessner C, Kuhn H, Toepfer K, et al. Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients. Lung Cancer. 2004;43:215–22.

    Article  PubMed  Google Scholar 

  113. Carpagnano GE, Foschino-Barbaro MP, Mule G, et al. 3p microsatellite alterations in exhaled breath condensate from patients with non-small cell lung cancer. Am J Respir Crit Care Med. 2005;172:738–44.

    Article  PubMed  Google Scholar 

  114. Carpagnano GE, Spanevello A, Carpagnano F, et al. Prognostic value of exhaled microsatellite alterations at 3p in NSCLC patients. Lung Cancer. 2009;64:334–40.

    Article  PubMed  Google Scholar 

  115. Carpagnano GE, Foschino-Barbaro MP, Spanevello A, et al. 3p microsatellite signature in exhaled breath condensate and tumor tissue of patients with lung cancer. Am J Respir Crit Care Med. 2008;177:337–41.

    Article  CAS  PubMed  Google Scholar 

  116. Carpagnano GE, Spanevello A, Beghe B, et al. Microsatellite alterations suggestive of organ-specific asthma and atopy in exhaled breath condensate. Allergy. 2010;65:404–5.

    Article  CAS  PubMed  Google Scholar 

  117. Carpagnano GE, Costantino E, Palladino GP, et al. Microsatellite alterations and cell-free DNA analysis: could they increase the cytology sensitivity in the diagnosis of malignant pleural effusion? Rejuvenation Res. 2012;15:265–73.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang D, Takigawa N, Ochi N, et al. Detection of the EGFR mutation in exhaled breath condensate from a heavy smoker with squamous cell carcinoma of the lung. Lung Cancer. 2011;73:379–80.

    Article  PubMed  Google Scholar 

  119. Kordiak J, Szemraj J, Hamara K, et al. Complete surgical resection of lung tumor decreases exhalation of mutated KRAS oncogene. Respir Med. 2012;106:1293–300.

    Article  PubMed  Google Scholar 

  120. Chen JL, Chen JR, Huang FF, et al. Analysis of p16 gene mutations and their expression using exhaled breath condensate in non-small-cell lung cancer. Oncol Lett. 2015;10:1477–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mozzoni P, Banda I, Goldoni M, et al. Plasma and EBC microRNAs as early biomarkers of non-small-cell lung cancer. Biomarkers. 2013;18:679–86.

    Article  CAS  PubMed  Google Scholar 

  122. Carpagnano GE, Koutelou A, Natalicchio MI, et al. HPV in exhaled breath condensate of lung cancer patients. Br J Cancer. 2011;105:1183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang Ai SS, Hsu K, Herbert C, et al. Mitochondrial DNA mutations in exhaled breath condensate of patients with lung cancer. Respir Med. 2013;107:911–8.

    Article  PubMed  Google Scholar 

  124. Carpagnano GE, Resta O, Foschino-Barbaro MP, et al. Interleukin-6 is increased in breath condensate of patients with non-small cell lung cancer. Int J Biol Markers. 2002;17:141–5.

    CAS  PubMed  Google Scholar 

  125. Brussino L, Culla B, Bucca C, et al. Inflammatory cytokines and VEGF measured in exhaled breath condensate are correlated with tumor mass in non-small cell lung cancer. J Breath Res. 2014;8:027110.

    Article  PubMed  CAS  Google Scholar 

  126. Carpagnano GE, Spanevello A, Curci C, et al. IL-2, TNF-alpha, and leptin: local versus systemic concentrations in NSCLC patients. Oncol Res. 2007;16:375–81.

    Article  PubMed  Google Scholar 

  127. Dalaveris E, Kerenidi T, Katsabeki-Katsafli A, et al. VEGF, TNF-alpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer. 2009;64:219–25.

    Article  PubMed  Google Scholar 

  128. Jungraithmayr W, Frings C, Zissel G, et al. Inflammatory markers in exhaled breath condensate following lung resection for bronchial carcinoma. Respirology. 2008;13:1022–7.

    PubMed  Google Scholar 

  129. Kullmann T, Barta I, Csiszer E, et al. Differential cytokine pattern in the exhaled breath of patients with lung cancer. Pathol Oncol Res. 2008;14:481–3.

    Article  PubMed  Google Scholar 

  130. Gu P, Huang G, Chen Y, et al. Diagnostic utility of pleural fluid carcinoembryonic antigen and CYFRA 21-1 in patients with pleural effusion: a systematic review and meta-analysis. J Clin Lab Anal. 2007;21:398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liang QL, Shi HZ, Qin XJ, et al. Diagnostic accuracy of tumour markers for malignant pleural effusion: a meta-analysis. Thorax. 2008;63:35–41.

    Article  PubMed  Google Scholar 

  132. Shi HZ, Liang QL, Jiang J, et al. Diagnostic value of carcinoembryonic antigen in malignant pleural effusion: a meta-analysis. Respirology. 2008;13:518–27.

    Article  PubMed  Google Scholar 

  133. Nguyen AH, Miller EJ, Wichman CS, et al. Diagnostic value of tumor antigens in malignant pleural effusion: a meta-analysis. Transl Res. 2015;166:432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Feng M, Zhu J, Liang L, et al. Diagnostic value of tumor markers for lung adenocarcinoma-associated malignant pleural effusion: a validation study and meta-analysis. Int J Clin Oncol. 2017;22:283–90.

    Article  CAS  PubMed  Google Scholar 

  135. Yang Y, Liu YL, Shi HZ. Diagnostic accuracy of combinations of tumor markers for malignant pleural effusion: an updated meta-analysis. Respiration. 2017;94:62–9.

    Article  CAS  PubMed  Google Scholar 

  136. Zhu J, Feng M, Liang L, et al. Is neuron-specific enolase useful for diagnosing malignant pleural effusions? Evidence from a validation study and meta-analysis. BMC Cancer. 2017;17:590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Lin W, Liu X, Cen Y. Diagnostic accuracy of epithelial membrane antigen for malignant effusions: a meta-analysis. Int J Biol Markers. 2016;31:e11–6.

    Article  PubMed  Google Scholar 

  138. Tian P, Shen Y, Feng M, et al. Diagnostic accuracy of endostatin for malignant pleural effusion: a clinical study and meta-analysis. Postgrad Med. 2015;127:529–34.

    Article  PubMed  Google Scholar 

  139. Tian P, Shen Y, Wan C, et al. Diagnostic value of survivin for malignant pleural effusion: a clinical study and meta-analysis. Int J Clin Exp Pathol. 2014;7:5880–7.

    PubMed  PubMed Central  Google Scholar 

  140. Li D, Wang B, Long H, Wen F. Diagnostic accuracy of calretinin for malignant mesothelioma in serous effusions: a meta-analysis. Sci Rep. 2015;5:9507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ren R, Yin P, Zhang Y, et al. Diagnostic value of fibulin-3 for malignant pleural mesothelioma: a systematic review and meta-analysis. Oncotarget. 2016;7:84851–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dakubo, G.D. (2019). Lung Cancer Biomarkers in Proximal Fluids. In: Cancer Biomarkers in Body Fluids. Springer, Cham. https://doi.org/10.1007/978-3-030-24725-6_4

Download citation

Publish with us

Policies and ethics