Skip to main content

Gene Expression Regulation in Salvia miltiorrhiza

  • Chapter
  • First Online:
The Salvia miltiorrhiza Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 317 Accesses

Abstract

Transcription factors are a group of proteins that modulate many important biological processes by regulating the transcription of downstream target genes. In general, each plant transcription factor contains a DNA-binding domain, an oligomerization domain, a transcription regulation domain and a nuclear localization signal. In the past few years, many progresses have been made in the characterization of S. miltiorrhiza transcription factors on a genome-wide scale. It includes cloning of open reading frames (ORFs), sequence analysis, and expression profiling. Many identified transcription factors are members of the MYB, WRKY, bHLH, ZIP and AP2/ERF families. Some of them have been found to play key roles in plant hormone signaling and in the regulation of cell growth and differentiation. Transcription factors have been identified as regulators in the biosynthesis of various secondary metabolites in S. miltiorrhiza. In this chapter, I briefly summarized recent research progresses in the regulatory role of transcription factors in S. miltiorrhiza growth and differentiation, stresses and metabolic pathways. It will facilitate further characterization of transcription factors in S. miltiorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251:533–549

    Article  CAS  PubMed  Google Scholar 

  • Adam E, Szell M, Szekeres M, Schaefer E, Nagy F (1994) The developmental and tissue-specific expression of tobacco phytochrome-A genes. Plant J 6:283–293

    Article  CAS  Google Scholar 

  • Adamska I, Scheel B, Kloppstech K (1991) Circadian oscillations of nuclear-encoded chloroplast proteins in pea (Pisum sativum). Plant Mol Biol 17:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Schmidt RJ, Burr B, Burr FA (1991) An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes Dev 5:310–320

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332

    Article  CAS  PubMed  Google Scholar 

  • Bansal KC, Bogorad L (1993) Cell type-preferred expression of maize cab-m1: repression in bundle sheath cells and enhancement in mesophyll cells. Proc Natl Acad Sci USA 90:4057–4061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Séguin A, MacKay J (2010) Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoidand flavonoid-oriented responses. J Exp Bot 61:3847–3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431–6439

    Article  CAS  PubMed  Google Scholar 

  • Boulikas T (1994) Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem 55:32–58

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Wang Y, Shi M, Hao X, Zhao W, Wang Y, Ren J, Kai G (2018) Transcription Factor SmWRKY1 Positively Promotes the Biosynthesis of Tanshinones in Salvia miltiorrhiza. Front Plant Sci 9:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153:1398–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Chena F, Chiu FCK, Lo CMY (2001) The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzyme Microb Tech 28:100–105

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Yan T, Shen Q, Lu X, Pan Q, Huang Y, Tang Y, Fu X, Liu M, Jiang W, Lv Z, Shi P, Ma Y, Hao X, Zhang L, Li L, Tang K (2017) GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol 214:304–316

    Article  CAS  Google Scholar 

  • Chern MS, Bobb AJ, Bustos MM (1996) The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. Plant Cell 8:305–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill JD, Goossens A (2011) APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Dehesh K, Smith LG, Tepperman JM, Quail PH (1995) Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant Journal 8:25–36

    Article  CAS  Google Scholar 

  • Deng C, Hao X, Shi M, Fu R, Wang Y, Zhang Y, Zhou W, Feng Y, Makunga NP, Kai G (2019) Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci 284:1–8

    Article  CAS  PubMed  Google Scholar 

  • Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant 2:43–58

    Article  CAS  PubMed  Google Scholar 

  • Di P, Zhang L, Chen J, Tan H, Xiao Y, Dong X, Zhou X, Chen W (2013) 13C Tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem Biol 8:1537–1548

    Article  CAS  PubMed  Google Scholar 

  • Ding K, Pei T, Bai Z, Jia Y, Ma P, Liang Z (2017) SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots. Sci Rep 7:5104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du T, Niu J, Su J, Li S, Guo X, Li L, Cao X, Kang J (2018) SmbHLH37 functions antagonistically with SmMYC2 in regulating Jasmonate-Mediated biosynthesis of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 9:1720

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Foster R, Izawa T, Chua NH (1994) Plant bZIP proteins gather at ACGT elements. FASEB J 8:192–200

    Article  CAS  PubMed  Google Scholar 

  • Froidure S, Roby D, Rivas S (2010) Expression of the Arabidopsis transcription factor AtMYB30 is post-transcriptionally regulated. Plant Physiol Biochem 48:735–739

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, Yang B, Peters RJ (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Letters 11:5170–5173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Sun HX, Xiao H, Cui G, Hillwig ML, Jackson A, Wang X, Shen Y, Zhao N, Zhang L, Wang XJ, Peters RJ, Huang L (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genom 15:73

    Article  Google Scholar 

  • Grasser KD (1995) Plant chromosomal high mobility group (HMG) proteins. Plant J 7:185–192

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ (1997) The structure of plant gene promoters. Genet Engin 19:15–47

    Article  CAS  Google Scholar 

  • Guiltinan MJ, Miller L (1994) Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol 26:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, Liu W, Guan M, Yang J, Cui G, Kang L, Yang L, Shen Y, Tang J, Lin H, Ma X, Jin B, Liu Z, Peters RJ, Zhao ZK, Huang L (2016) Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol 210:525–534

    Article  CAS  Google Scholar 

  • Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L (2013) CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. P Natl A Sci 110:12108–12113

    Article  CAS  Google Scholar 

  • Gupta R, Webster CI, Walker AR, Gray JC (1997) Chromosomal location and expression of the single-copy gene encoding high-mobility-group protein HMG-I/Y in Arabidopsis thaliana. Plant Mol Biol 34:529–536

    Article  CAS  PubMed  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Sun M, Yuan T, Wang Y, Shi M, Lu S, Tang B, Pan J, Wang Y, Kai G (2019) The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem 274:368–375

    Article  CAS  PubMed  Google Scholar 

  • Hurst HC (1995) Transcription factors 1: bZIP proteins. Protein Profile 2:105–168

    CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563–571

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Foster R, Chua NH (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230:1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Ji AJ, Luo HM, Xu ZC, Zhang X, Zhu YJ, Liao BS, Yao H, Song JY, Chen SL (2016) Genome-wide identification of the AP2/ERF gene family involved in active constituent biosynthesis in Salvia miltiorrhiza. Plant Genome 9

    Google Scholar 

  • Kai GY, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13:319–327

    Article  CAS  PubMed  Google Scholar 

  • Katagiri F, Seipel K, Chua NH (1992) Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol Cell Biol 12:4809–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay SA (1993) Shedding light on clock controlled cab gene transcription in higher plants. Semin Cell Biol 4:81–86

    Article  CAS  PubMed  Google Scholar 

  • Klinge B, Uberlacker B, Korfhage C, Werr W (1996) ZmHox: a noval class of maize homeobox genes. Plant Mol Biol 30:439–453

    Article  CAS  PubMed  Google Scholar 

  • Kozaki A, Sakamoto A, Takeba G (1992) The promoter of the gene for plastidic glutamine synthetase (GS2) from rice is developmentally regulated and exhibits substrate-induced expression in transgenic tobacco plants. Plant Cell Physiol 33:233–238

    Article  CAS  Google Scholar 

  • Kuhn RM, Caspar T, Dehesh K, Quail PH (1993) DNA binding factor GT-2 from Arabidopsis. Plant Mol Biol 23:337–348

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, Lee S, Hwang DJ (2018) Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice (N Y) 11:5

    Article  Google Scholar 

  • Li C, Lu S (2014) Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genom 15:277

    Article  CAS  Google Scholar 

  • Li C, Li D, Shao F, Lu S (2015) Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. BMC Genom 16:200

    Article  CAS  Google Scholar 

  • Li LN (1998) Biologically active components from traditional Chinese medicines. Pure Appl Chem 70:547–554

    Article  CAS  Google Scholar 

  • Li S, Wu Y, Kuang J, Wang H, Du T, Huang Y, Zhang Y, Cao X, Wang Z (2018) SmMYB111 is a key factor to phenolic acid biosynthesis and interacts with both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. J Agric Food Chem 66:8069–8078

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 92:5905–5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Zhang L, Zhang F et al (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Lyck R, Harmening U, Höhfeld I, Treuter E, Scharf KD, Nover L (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta 202:117–125

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Liu J, Osbourn A, Dong J, Liang Z (2015) Regulation and metabolic engineering of tanshinone biosynthesis. RSC Adv 5:18137–18144

    Article  CAS  Google Scholar 

  • Ma P, Liu J, Zhang C, Liang Z (2013) Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl Biochem Biotech 170:1253–1262

    Article  CAS  Google Scholar 

  • Mahjoub A, Hernould M, Joubès J, Decendit A, Mars M, Barrieu F, Hamdi S, Delrot S (2009) Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development flower morphology and flavonoid and terpenoid metabolism. Plant Physiol Biochem 47:551–561

    Article  CAS  PubMed  Google Scholar 

  • Mannen K, Matsumoto T, Takahashi S, Yamaguchi Y, Tsukagoshi M, Sano R, Suzuki H, Sakurai N, Shibata D, Koyama T, Nakayama T (2014) Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochem Biophys Res Commun 443:768–774

    Article  CAS  PubMed  Google Scholar 

  • Martin C (1997) MYB transcription factors in plants. Trends Gene 13:67–73

    Article  CAS  Google Scholar 

  • Meisel L, Lam E (1996) The conserved ELK-homeodomain of KNOTTED-1 contains two regions that signal nuclear localization. Plant Mol Biol 30:1–14

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Huang H, Tudor M, Hu Y, Ma H (1996) Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8:831–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nantel A, Quatrano RS (1996) Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity. J Biol Chem 271:31296–31305

    Article  CAS  PubMed  Google Scholar 

  • Paul P, Singh SK, Patra B, Sui X, Pattanaik S, Yuan L (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213:1107–1123

    Article  CAS  PubMed  Google Scholar 

  • Pei T, Ma P, Ding K, Liu S, Jia Y, Ru M, Dong J, Liang Z (2018) SmJAZ8 acts as a core repressor regulating JA-induced biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. J Exp Bot 69:1663–1678

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim ML, Caspar T, Quail PH, McClung CR (1993) Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Mol Biol 23:349–364

    Article  CAS  PubMed  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Rook F, Weisbeek P, Smeekens S (1998) The light-regulated Arabidopsis bZIP transcription factor gene ATB2 encodes a protein with an unusually long leucine zipper domain. Plant Mol Biol 37:171–178

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sainz MB, Grotewold E, Chandler VL (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9:611–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto A, Minami M, Huh GH, Iwabuchi M (1993) The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur J Biochem 217:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sears MT, Zhang H, Rushton PJ, Wu M, Han S, Spano AJ, Timko MP (2014) NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Mol Biol 84:49–66

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Lu X, Yan T, Fu X, Lv Z, Zhang F, Pan Q, Wang G, Sun X, Tang K (2016) The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol 210:1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boisson B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45:477–488

    Article  PubMed  Google Scholar 

  • Singh AK, Kumar SR, Dwivedi V, Rai A, Pal S, Shasany AK, Nagegowda DA (2017) A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytol 215:1115–1131

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Guo L, Liu T, Lin C, Wang J, Li X (2017) Comparative RNA-sequence transcriptome analysis of phenolic acid metabolism in Salvia miltiorrhiza, a traditional Chinese medicine model plant. Int J Genomics 2017:9364594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun M, Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G (2019) The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J Exp Bot 70:243–254

    Article  PubMed  Google Scholar 

  • Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan H, Xiao L, Gao S, Li Q, Chen J, Xiao Y, Ji Q, Chen R, Chen W, Zhang L (2015) TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Mol Plant 8:1396–1411

    Article  CAS  PubMed  Google Scholar 

  • Tominaga-Wada R, Nukumizu Y, Sato S, Kato T, Tabata S, Wada T (2012) Functional divergence of MYB-related genes WEREWOLF and AtMYB23 in Arabidopsis. Biosci Biotechnol Biochem 76:883–887

    Article  CAS  PubMed  Google Scholar 

  • Tonoike H, Han IS, Jongewaard I, Doyle M, Guiltinan M, Fosket DE (1994) Hypocotyl expression and light down regulation of the soybean tubulin gene, tubB1. Plant J 5:343–351

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4:1213–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan S, Li C, Ma X, Luo K (2017) PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Rep 36:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Sun W, Li Q, Li Y, Luo H, Song J, Sun C, Qian J, Zhu Y, Hayward A, Xu H, Chen S (2015) Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. Planta 241:711–725

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z, Chen C, Zhang Y (2017) Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Front Plant Sci 8:52

    PubMed  PubMed Central  Google Scholar 

  • Wu JY, Shi M (2008) Ultrahigh diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots. Appl Microbiol Biot 78:441–448

    Google Scholar 

  • Wu SJ, Shi M, Wu JY (2009) Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots. Biotechnol Appl Bioc 52:89

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhang Y, Li L, Guo X, Wang B, Cao X, Wang Z (2018) AtPAP1 Interacts with and activates SmbHLH51, a positive regulator to phenolic acids biosynthesis in Salvia miltiorrhiza. Front Plant Sci 9

    Google Scholar 

  • Xing B, Liang L, Liu L, Hou Z, Yang D, Yan K, Zhang X, Liang Z (2018a) Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Plant Cell Rep 37:1681–1692

    Article  CAS  PubMed  Google Scholar 

  • Xing B, Yang D, Yu H, Zhang B, Yan K, Zhang X, Han R, Liang Z (2018b) Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Plant Sci 276:229–238

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, Sun W, Shen G, Zhang X, Qian J, Ji A, Xu Z, Luo X, He L, Li C, Sun C, Yan H, Cui G, Li X, Li X, Wei J, Liu J, Wang Y, Hayward A, Nelson D, Ning Z, Peters RJ, Qi X, Chen S (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 6:949–952

    Article  CAS  Google Scholar 

  • Xu H, Zhang L, Zhou CC, Xiao JB, Liao P, Kai GY (2010) Metabolic regulation and genetic engineering of pharmaceutical component tanshinone biosynthesis in Salvia miltiorrhiza. J Med Plant Res 4:2591–2597

    Article  Google Scholar 

  • Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (C)-d-cadinene synthase-A. Plant Physiol 135:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki K, Kigawa T, Seki M, Shinozaki K, Yokoyama S (2013) DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci 18:267–276

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jia H, Wang F, Wang C, Liu S, Guo X (2015) Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana. Front Physiol 6:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10:75–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y, Fang X, Liu R, Wang L, Chen X, Yang C (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS ONE 8:e80464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang N, Zhou W, Su J, Wang X, Li L, Wang L, Cao X, Wang Z (2017) Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza. Front Plant Sci 8:1804

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu H, Guo W, Yang D, Hou Z, Liang Z (2018) Transcriptional profiles of SmWRKY family genes and their putative roles in the biosynthesis of tanshinone and phenolic acids in Salvia miltiorrhiza. Int J Mol Sci 19:E1593

    Article  PubMed  CAS  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhou L, Zheng X, Zhang J, Yang L, Tan R, Zhao S (2017) Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Plant Cell Rep 36:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wu B, Zhao D, Li C, Shao F, Lu S (2014) Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza. J Integr Plant Biol 56:38–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Ma P, Yang D, Li W, Liang Z, Liu Y, Liu F (2013) Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza. PLoS ONE 8:e73259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S (2015a) Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 5:11244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar PG, Hill L, Santino A, Fernie AR, Martin C (2015b) Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 6:8635

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu Z, Ji A, Luo H, Song J (2018) Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharm Sin B 8:295–305

    Article  PubMed  Google Scholar 

  • Zhang Y, Yan Y, Wang Z (2010) The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 58:12168–12175

    Article  CAS  PubMed  Google Scholar 

  • Zhao GR, Zhang HM, Ye TX, Xiang ZJ, Yuan YJ, Guo ZX, Zhao LB (2008) Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxico l 46:73–81

    Article  CAS  Google Scholar 

  • Zhao SJ, Zhang JJ, Tan RH, Yang L, Zheng XY (2015) Enhancing diterpenoid concentration in Salvia miltiorrhiza hairy roots through pathway engineering with maize C1 transcription factor. J Exp Bot 66:7211–7226

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zuo Z, Chow MSS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    Google Scholar 

  • Zhou W, Huang Q, Wu X, Zhou Z, Ding M, Shi M, Huang F, Li S, Wang Y, Kai G (2017) Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci Rep 7:10554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Sun W, Chen J, Tan H, Xiao Y, Li Q, Ji Q, Gao S, Chen L, Chen S, Zhang L, Chen W (2016) SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Sci Rep 6:22852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Huo DA, Hong XX, Guo J, Peng T, Liu J, Huang XL, Yan HQ, Weng QB, Zhang XC, Du XY (2019) The Salvia miltiorrhiza NAC transcription factor SmNAC1 enhances zinc content in transgenic Arabidopsis. Gene 688:54–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2 M-3-016) and the National Natural Science Foundation of China (81603225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caili Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C. (2019). Gene Expression Regulation in Salvia miltiorrhiza. In: Lu, S. (eds) The Salvia miltiorrhiza Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-24716-4_8

Download citation

Publish with us

Policies and ethics