Skip to main content

Design of Clinical Trials to Validate Cuffless Blood Pressure Monitors

  • Chapter
  • First Online:
The Handbook of Cuffless Blood Pressure Monitoring

Abstract

Currently the market is flooded with cuffless blood pressure monitors. However, these devices are not always as accurate as consumers and physicians might expect.

Therefore, the clinical accuracy of these blood pressure monitors should be verified using a suitable standard. As the current standards for blood pressure monitors are designed for cuff-based devices these are not suitable for verifying the accuracy of monitors without cuffs due to essential differences between blood pressure monitors with and without cuffs.

For example, almost all cuffless monitors must be calibrated, may be used as wearables during activity and may measure blood pressure at body parts other than upper-arm and wrist.

For this reason, there is an urgent need for a new standard to test cuffless monitors that covers these different aspects. This chapter describes characteristics of cuffless monitors, highlights the differences between cuff-based and cuffless monitors, and proposes methods for testing. Additionally, attention is paid to the selection of participants in relation to good clinical practice and to statistical reporting of the figures. Finally, some published clinical studies to the accuracy of cuffless blood pressure monitors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gazzola K, Honingh M, Truijen J, Zuliani G, Van Den Born BH. Effect of cuff inflation on blood pressure during self-measurement. J Hypertens. 2018;36(9):1798–802.

    Article  CAS  PubMed  Google Scholar 

  2. Palatini P, Benetti E, Fania C, Saladini F. Only troncoconical cuffs can provide accurate blood pressure measurements in people with severe obesity. J Hypertens. 2019;37(1):37–41.

    CAS  PubMed  Google Scholar 

  3. Zhang G, Gao M, Xu D, Olivier NB, Mukkamala R. Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure. J Appl Physiol (1985). 2011;111(6):1681–6.

    Article  Google Scholar 

  4. Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proc R Soc B Biol Sci. 1922;93(652):298–306.

    Article  Google Scholar 

  5. IEEE standard for wearable cuffless blood pressure measuring devices. IEEE std 1708-2014; 2014. p. 1–38.

    Google Scholar 

  6. Chin KY, Panerai RB. Comparative study of Finapres devices. Blood Press Monit. 2012;17(4):171–8.

    Article  PubMed  Google Scholar 

  7. Non-invasive sphygmomanometers — Part 2: clinical investigation of the intermittent automated measurement type. ISO/CD 81060-2:2013(E); 2013.

    Google Scholar 

  8. AAMI. Association for the Advancement of Medical Instrumentation; non-invasive sphygmomanometers -part 2: clinical investigation of automated measurement type, ANSI/AAMI/ISO 81060-2013; 2013.

    Google Scholar 

  9. Wang R, Jia W, Mao Z-H, Sclabassi RJ, Sun M. Cuff-free blood pressure estimation using pulse transit time and heart rate. In: International conference on signal processing proceedings international conference on signal processing 2014; 2014. p. 115–8.

    Google Scholar 

  10. Butlin M, Shirbani F, Barin E, Tan I, Spronck B, Avolio A. Cuffless estimation of blood pressure: importance of variability in blood pressure dependence of arterial stiffness across individuals and measurement sites. IEEE Trans Biomed Eng. 2018;65(11):2377–83.

    Article  PubMed  Google Scholar 

  11. Pm N, Joseph J, Karthik S, Sivaprakasam M, Chenniappan M. Bi-modal arterial compliance probe for calibration-free cuffless blood pressure estimation. IEEE Trans Biomed Eng. 2018;65(11):2392–404.

    Article  Google Scholar 

  12. Boubouchairopoulou N, Kollias A, Chiu B, Chen B, Lagou S, Anestis P, et al. A novel cuffless device for self-measurement of blood pressure: concept, performance and clinical validation. J Hum Hypertens. 2017;31(7):479–82.

    Article  CAS  PubMed  Google Scholar 

  13. Bilo G, Zorzi C, Ochoa Munera JE, Torlasco C, Giuli V, Parati G. Validation of the Somnotouch-NIBP noninvasive continuous blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Blood Press Monit. 2015;20(5):291–4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Webb AJS, Mazzucco S, Li L, Rothwell PM. Prognostic significance of blood pressure variability on beat-to-beat monitoring after transient ischemic attack and stroke. Stroke. 2018;49(1):62–7.

    Article  PubMed  Google Scholar 

  15. Verberk WJ, Kessels AG, Thien T. Blood pressure measurement method and inter-arm differences: a meta-analysis. Am J Hypertens. 2011;24(11):1201–8.

    Article  PubMed  Google Scholar 

  16. Grossman A, Weiss A, Beloosesky Y, Morag-Koren N, Green H, Grossman E. Inter-arm blood pressure difference in hospitalized elderly patients--is it consistent? J Clin Hypertens (Greenwich). 2014;16(7):518–23.

    Google Scholar 

  17. Ding X, Yan BP, Zhang YT, Liu J, Zhao N, Tsang HK. Pulse transit time based continuous cuffless blood pressure estimation: a new extension and a comprehensive evaluation. Sci Rep. 2017;7(1):11554.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Borlotti A, Khir AW, Rietzschel ER, De Buyzere ML, Vermeersch S, Segers P. Noninvasive determination of local pulse wave velocity and wave intensity: changes with age and gender in the carotid and femoral arteries of healthy human. J Appl Physiol (1985). 2012;113(5):727–35.

    Article  Google Scholar 

  19. Eikendal ALM, den Ruijter HM, Haaring C, Saam T, van der Geest RJ, Westenberg JJM, et al. Sex, body mass index, and blood pressure are related to aortic characteristics in healthy, young adults using magnetic resonance vessel wall imaging: the AMBITYON study. Magma (New York, NY). 2018;31(1):173–82.

    CAS  Google Scholar 

  20. Friedman BA, Alpert BS, Osborn D, Prisant LM, Quinn DE, Seller J. Assessment of the validation of blood pressure monitors: a statistical reappraisal. Blood Press Monit. 2008;13(4):187–91.

    Article  PubMed  Google Scholar 

  21. Yan R. Chapter 6: proposal for the evaluation of wearable cuff-less devices. Thesis. In: Evaluation of the wearable cuff-less blood pressure measuring devices; 2009.

    Google Scholar 

  22. Yan IR, Poon CC, Zhang YT. Evaluation scale to assess the accuracy of cuff-less blood pressure measuring devices. Blood Press Monit. 2009;14(6):257–67.

    Article  PubMed  Google Scholar 

  23. Clinical investigation of medical devices for human subjects — good clinical practice ISO 14155:2011(E); 2011.

    Google Scholar 

  24. Alpert BS. The Accutension Stetho, an automated auscultatory device to validate automated sphygmomanometer readings in individual patients. J Hum Hypertens. 2018;32(6):455–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82.

    Article  PubMed  Google Scholar 

  26. O’Brien E, Petrie J, Littler W, de Swiet M, Padfield PL, Altman DG, et al. An outline of the revised British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J Hypertens. 1993;11(6):677–9.

    Article  PubMed  Google Scholar 

  27. O’Brien E, Atkins N, Stergiou G, Karpettas N, Parati G, Asmar R, et al. European Society of Hypertension International Protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press Monit. 2010;15(1):23–38.

    Article  PubMed  Google Scholar 

  28. Stergiou GS, Alpert B, Mieke S, Asmar R, Atkins N, Eckert S, et al. A universal standard for the validation of blood pressure measuring devices: association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration statement. Hypertension (Dallas, Tex: 1979). 2018;71(3):368–74.

    Article  CAS  Google Scholar 

  29. Yan IR, Poon CC, Zhang YT. A protocol design for evaluation of wearable cuff-less blood pressure measuring devices. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society annual conference 2009; 2009. p. 7045–7.

    Google Scholar 

  30. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England). 1986;1(8476):307–10.

    Article  CAS  Google Scholar 

  31. Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  32. Saugel B, Dueck R, Wagner JY. Measurement of blood pressure. Best Pract Res Clin Anaesthesiol. 2014;28(4):309–22.

    Article  PubMed  Google Scholar 

  33. Association for the Advancement of Medical Instrumentation. American National Standard. ANSI/AAMI/ISO 81060-2:2013 non-invasive sphygmomanometers—part 2: clinical investigation of automated measurement type. Arlington: AAMI; 2013.

    Google Scholar 

  34. Non-invasive sphygmomanometers—part 1: requirements and test methods for non-automated measurement type. ANSI/AAMI/ISO 81060-1:2007; 2007.

    Google Scholar 

  35. Medical electrical equipment—part 2-34: particular requirements for the basic safety and essential performance of invasive blood pressure monitoring equipment. IEC 60601-2-34:2011; 2011.

    Google Scholar 

  36. Lin WH, Wang H, Samuel OW, Liu G, Huang Z, Li G. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy. Physiol Meas. 2018;39(2):025005.

    Article  PubMed  Google Scholar 

  37. Silke B, McAuley D. Accuracy and precision of blood pressure determination with the Finapres: an overview using re-sampling statistics. J Hum Hypertens. 1998;12(6):403–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tang Z, Tamura T, Sekine M, Huang M, Chen W, Yoshida M, et al. A chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE J Biomed Health Inform. 2017;21(5):1194–205.

    Article  PubMed  Google Scholar 

  39. Shin H, Min SD. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study. Biomed Eng Online. 2017;16(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huynh T, Chung W-Y. Radial electrical impedance: a potential indicator for noninvasive cuffless blood pressure measurement. J Sens Sci Tech. 2017;26(4):239–44.

    Google Scholar 

  41. Schoot TS, Weenk M, van de Belt TH, Engelen LJ, van Goor H, Bredie SJ. A new cuffless device for measuring blood pressure: a real-life validation study. J Med Internet Res. 2016;18(5):e85.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nabeel PM, Joseph J, Karthik S, Sivaprakasam M, Chenniappan M. Bi-modal arterial compliance probe for calibration-free cuffless blood pressure estimation. IEEE Trans Biomed Eng. 2018;65(11):2392–404.

    Article  Google Scholar 

  43. Wang Y, Liu Z, Ma S. Cuff-less blood pressure measurement from dual-channel photoplethysmographic signals via peripheral pulse transit time with singular spectrum analysis. Physiol Meas. 2018;39(2):025010.

    Article  PubMed  Google Scholar 

  44. Zhang Q, Zhou D, Zeng X. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Biomed Eng Online. 2017;16(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miao F, Fu N, Zhang YT, Ding XR, Hong X, He Q, et al. A novel continuous blood pressure estimation approach based on data mining techniques. IEEE J Biomed Health Inform. 2017;21(6):1730–40.

    Article  PubMed  Google Scholar 

  46. Watanabe N, Bando YK, Kawachi T, Yamakita H, Futatsuyama K, Honda Y, et al. Development and validation of a novel cuff-less blood pressure monitoring device. JACC Basic Trans Sci. 2017;2(6):631–42.

    Article  Google Scholar 

  47. Xiao-Rong D, Yan BP, Yuan-Ting Z, Jing L, Peng S, Ni Z. Coherence analysis of invasive blood pressure and its noninvasive indicators for improvement of cuffless measurement accuracy. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:2255–8.

    Google Scholar 

  48. Kim S, Lee JD, Park JB, Jang S, Kim J, Lee SS. Evaluation of the accuracy of a new cuffless magnetoplethysmography blood pressure monitor in hypertensive patients. Pulse (Basel, Switzerland). 2018;6(1-2):9–18.

    Google Scholar 

  49. Cicolini G, Pizzi C, Palma E, Bucci M, Schioppa F, Mezzetti A, et al. Differences in blood pressure by body position (supine, Fowler’s, and sitting) in hypertensive subjects. Am J Hypertens. 2011;24(10):1073–9.

    Article  PubMed  Google Scholar 

  50. Krisai P, Vischer AS, Kilian L, Meienberg A, Mayr M, Burkard T. Accuracy of 24-hour ambulatory blood pressure monitoring by a novel cuffless device in clinical practice. Heart (British Cardiac Society). 2019;105(5):399–405

    Google Scholar 

  51. Solà et al, 2017 - Performance of Systolic Blood Pressure estimation from radial Pulse Arrival Time (PAT) in anesthetized patients Presented at EMBEC2017 - European Medical and Biological Engineering Conference 2017, Tampere (FI), 11-15 June 2017.

    Google Scholar 

  52. Solà J, Ghamri Y, Proença M, Braun F, Lemkaddem A, Pierrel N, et al. Tracking blood pressure changes in anesthetized patients: the optical blood pressure monitoring (oBPM) technology; Conference Paper 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, At Honolulu, Honolulu, Hawaii, USA. July 17-21, 2018.

    Google Scholar 

  53. Matsumura K, Rolfe P, Toda S, Yamakoshi T. Cuffless blood pressure estimation using only a smartphone. Sci Rep. 2018;8(1):7298.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem J. Verberk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verberk, W.J. (2019). Design of Clinical Trials to Validate Cuffless Blood Pressure Monitors. In: Solà, J., Delgado-Gonzalo, R. (eds) The Handbook of Cuffless Blood Pressure Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-24701-0_12

Download citation

Publish with us

Policies and ethics