Skip to main content

What We Know from the Literature

  • Chapter
  • First Online:
  • 286 Accesses

Abstract

An effective practitioner must possess knowledge on how progression in problem solving is brought about, knowledge of the psycho-social processes and knowledge of the underpinning philosophies that enhance effective learning. This chapter presents the various views from the literature on what a ‘problem’ is, highlighting the subjective view of a problem, which depends mostly on the solver’s content knowledge and competence in the problem-solving process. With a focus on ‘well-defined problems’, problem-solving heuristics in physics are discussed, with the role of metacognitive processes emphasised. In addition, the chapter presents a strong argument for grounding the explicit teaching of problem-solving strategies to students within a constructivist paradigm, a paradigm that resonates well with a critical realist philosophical framework. With this approach, collaborative group problem-solving activities are aimed at developing agency and targeting the generative mechanisms that must be triggered to produce a shift in competence and collaboration. A framework which combines the different theoretical perspectives in the context of physics problem-solving is presented at the end of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, J. R. (1985). Cognitive psychology and its implications (2nd ed.). New York: W. H. Freeman and Company.

    Google Scholar 

  • Anderson, J. R. (1990). Cognitive psychology and its implications. San Francisco: Freeman.

    Google Scholar 

  • Archer, M. (1995). Realist social theory: The morphogenetic approach. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Artzt, A. F., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving. Cognition and Instruction, 9, 137–175.

    Article  Google Scholar 

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423.

    Article  Google Scholar 

  • Baddeley, A. D. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189–208.

    Article  Google Scholar 

  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Bandura, A. (1997). Self efficacy: The exercise of control. New York: Freeman.

    Google Scholar 

  • Bandura, A. (1999). A social cognitive theory of personality. In L. Pervin & O. John (Eds.), Handbook of personality (2nd ed., pp. 154–196). New York: Guilford Publications.

    Google Scholar 

  • Berk, L. E. (1986). Relationship of elementary school children’s private speech to behavioural accompaniment to task, attention and task performance. Developmental Psychology, 22, 671–680.

    Article  Google Scholar 

  • Berk, L., & Spuhl, S. (1995). Maternal interaction, private speech, and task performance in preschool children. Early Childhood Research Quarterly, 10, 145–169.

    Article  Google Scholar 

  • Bhaskar, R. (1978). A realist theory of science. Brighton, UK: Harvester Press.

    Google Scholar 

  • Bhaskar, R. (1979). The possibility of naturalism. Brighton, UK: Harvester Press.

    Google Scholar 

  • Bivens, J. A., & Berk, L. E. (1990). A longitudinal study of the development of elementary school children’s private speech. Merrill-Palmer Quarterly, 36, 443–463.

    Google Scholar 

  • Bouffard-Bouchard, T., Parent, S., & Larivèe, S. (1991). Influence of self-efficacy on self-regulation and performance among junior and senior high-school aged students. International Journal of Behavioral Development, 14, 153–164.

    Article  Google Scholar 

  • Brown, A. L. (1975). The development of memory: Knowing about knowing, and knowing how to know. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 103–152). New York: Academic Press.

    Google Scholar 

  • Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 1, pp. 77–165). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Bruning, R. H., Schraw, G. J., Norby, M. N., & Ronning, R. R. (2004). Cognitive psychology and instruction (4th ed.). Upper Saddle River, NJ: Pearson.

    Google Scholar 

  • Chen, Z., & Klahr, D. (2008). Remote transfer of scientific reasoning and problem-solving strategies in children. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 36, pp. 419–470). Amsterdam: Elsevier.

    Google Scholar 

  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. Pittsburgh: University of Pittsburgh.

    Google Scholar 

  • Collins, J. L. (1982). Self-efficacy and ability in achievement behavior. Paper presented at the meeting of the American Educational Research Association, New York.

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honour of Robert Glaser (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Cowan, N. (2010). Multiple concurrent thoughts: The meaning and developmental neuropsychology of working memory. Developmental Neuropsychology, 35, 447–474.

    Article  Google Scholar 

  • Cyert, R. (1980). Problem solving and educational policy. In D. Tuma & F. Reif (Eds.), Problem solving and education: Issues in teaching and research (pp. 3–8). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Davidson, J. E., & Sternberg, R. J. (1998). Smart problem solving: How metacognition helps. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 47–68). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Davidson, J. E., Deuser, R., & Sternberg, R. J. (1994). The role of metacognition in problem solving. In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 207–266), Cambridge, MA: MIT Press.

    Google Scholar 

  • Dewey, J. (1910). How we think. London: D. C. Heath and Company.

    Book  Google Scholar 

  • Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11(6), 1011–1026.

    Article  Google Scholar 

  • Dominowski, R. (1998). Verbalization and problem solving. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 25–46). Lawrence.

    Google Scholar 

  • Dori, Y. J., Mevarech, Z., & Baker, D. (2018). Cognition, metacognition and culture in STEM education. Cham, Switzerland: Springer.

    Book  Google Scholar 

  • Elshout, J. J. (1987). Problem solving and education. In E. De Corte, H. Lodewijks, R. Parmentier, & P. Span (Eds.), Learning and instruction: European research in an international context (Vol. 1, pp. 259–274). Oxford: Leuven University Press and Pergamon Press. Erlbaum Associates.

    Google Scholar 

  • Ericsson, K. A. (2003). The search for general abilities and basic capacities: Theoretical implications from the modifiability and complexity of mechanisms mediating expert performance. In R. J. Sternberg & E. L. Grigorenko (Eds.), Perspectives on the psychology of abilities, competencies, and expertise (pp. 93–125). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Fitts, P. M., & Posner, M. I. (1967). Learning and skilled performance in human performance. Belmont CA: Brock-Cole.

    Google Scholar 

  • Flavell, J. H. (1977). Cognitive development. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911.

    Article  Google Scholar 

  • Flavell, J. H. (1981). Cognitive monitoring. In W. P. Dickson (Ed.), Children’s oral communication skills (pp. 35–60). New York: Academic.

    Google Scholar 

  • Gick, M. L., & Holyoak, K. J. (1987). The cognitive basis for knowledge transfer. In S. M. Cormier & J. D. Hagman (Eds.), Transfer of learning (pp. 81–120). New York: Academic Press.

    Google Scholar 

  • Gok, T. (2010). The general assessment of problem solving: Processes in physics education. Eurasian Journal of Physics and Chemistry Education, 2(2), 110–122.

    Google Scholar 

  • Greeno, J. G. (1976). Indefinite goals in well-structured problems. Psychological Review, 83, 479–491.

    Article  Google Scholar 

  • Guba, E. G., & Lincoln, Y. S. (1982). Epistemological and methodological bases of naturalistic inquiry. Educational Communication and Technology Journal, 30(4), 233–252.

    Google Scholar 

  • Halpern, D. F., & Hakel, M. D. (2003). Applying the science of learning to the university and beyond: Teaching for long-term retention and transfer. Change, July/August, 2–13.

    Google Scholar 

  • Hambrick, D. Z., & Engle, R. W. (2002). Effects of domain knowledge, working memory capacity and age on cognitive performance: An investigation of the knowledge-is-power hypothesis. Cognitive Psychology, 44, 339–387.

    Article  Google Scholar 

  • Hammersley, M. (2006). Questioning qualitative inquiry: Critical essays. London: Sage.

    Google Scholar 

  • Hammersley, M. (2012). Methodological paradigms in educational research, British Educational Research Association on-line resource. https://www.bera.ac.uk/wp-content/uploads/2014/03/Methodological-Paradigms.pdf.

  • Hardiman, P. T., Dufresne, R., & Mester, J. P. (1989). The relation between problem categorization and problem solving among experts and novices. Memory and Cognition, 17(5), 627–638.

    Article  Google Scholar 

  • Heller, K., & Docktor, J. (2009). Assessment of student problem solving processes. Minneapolis: School of Physics and Astronomy, University of Minnesota.

    Google Scholar 

  • Heller, K., & Heller, P. (1995). The competent problem solver: A strategy for solving problems in physics, Calculus version (2nd ed.). Minneapolis: McGraw-Hill.

    Google Scholar 

  • Heller, K., & Heller, P. (2000). The competent problem solver for introductory physics: Calculus. Minneapolis: McGraw-Hill Higher Education.

    Google Scholar 

  • Henderson, C., Heller, K., Heller, P., Kuo, V. H., & Yerushalmi, E. (2001). Instructors’ ideas about problem solving—Setting goals. In Proceedings of Physics Education Research Conference, Rochester, New York, July.

    Google Scholar 

  • Johnstone, A. H., & El-Banna, H. (1989). Understanding learning difficulties. A predictive research model. Studies in Higher Education, 14, 159–168.

    Article  Google Scholar 

  • Johnstone, A. H., Hogg, W., & Ziane, M. (1993). A working memory model applied to physics problem solving. International Journal of Science Education, 15, 663–672.

    Article  Google Scholar 

  • Jonassen, D. H., & Ionas, I. G. (2008). Designing effective supports for causal reasoning. Educational Technology Research and Development, 56, 287–308.

    Article  Google Scholar 

  • Kahney, H. (1986). Problem solving: A cognitive approach. Milton Keynes: Open University Press.

    Google Scholar 

  • Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and meta-cognitive training. American Educational Research Journal, 40, 281–310.

    Article  Google Scholar 

  • Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Model of competence in solving physics problems. Cognitive Science, 4, 317–345.

    Article  Google Scholar 

  • Lawrence, J. A., & Valsiner, J. (1993). Conceptual roots of internalization: From transmission to transformation. Human Development, 36, 150–167.

    Article  Google Scholar 

  • Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). Self-confidence, interest, beliefs, and metacognition. Key influences on problem solving behavior. In D. B. McLeod & V. M. Adams (Eds.), Affect and mathematical problem solving: A new perspective (pp. 75–88). New York: Springer-Verlag.

    Google Scholar 

  • Lewin, C., & Somekh, B. (Eds.). (2011). Theory and methods in social research (2nd ed.). London: Sage.

    Google Scholar 

  • Littlefield, J., & Rieser, J. J. (1993). Semantic features of similarity and children’s strategies for identification of relevant information in mathematical story problems. Cognition and Instruction, 11, 133–188.

    Article  Google Scholar 

  • Luria, A. R. (1961). The role of speech in the regulation of normal and abnormal behavior. New York: Liveright.

    Google Scholar 

  • Marshall, H. H., & Weinstein, R. S. (1984). Classroom factors affecting students’ self-evaluations: An interactional model. Review of Educational Research, 54, 301–326.

    Article  Google Scholar 

  • Matlin, M. W. (2009). Cognitive psychology (7th ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  • Mayer, R. E. (1991). Thinking, problem solving, cognition (2nd ed.). New York: W. H. Freeman and Company.

    Google Scholar 

  • Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 45–61). New York: Macmillan.

    Google Scholar 

  • Mayer, R. E., & Wittrock, R. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part I. An account of basic findings. Psychological Review, 88(5), 375–407.

    Google Scholar 

  • Meichenbaum, D. (1977). Cognitive behaviour modification: An integrative approach. New York: Plenum.

    Book  Google Scholar 

  • Miller, M. (1987). Argumentation and cognition. Social and functional approaches to language and thought. In M. Hickmann (Ed.) (pp. 225–249). New York: Academic Press.

    Google Scholar 

  • Nelson, T. O., & Narens, L. (1994). Why investigate metacognition? In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 1–25). Cambridge, MA: MIT Press.

    Google Scholar 

  • Neto, A., & Valente, M. (1997). Problem solving in physics: Towards a meta cognitively developed approach. Paper presented at Annual meeting (70th) of the National Association for Research in Science Teaching, Oak Brook, IL, March 21–24.

    Google Scholar 

  • Ngu, B. H., Low, R., & Sweller, J. (2002). Text editing in chemistry instruction. Instructional Science, 30, 379–402.

    Article  Google Scholar 

  • Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. In M. T. Keane & K. J. Gilhooly (Eds.), Advances in the psychology of thinking (pp. 1–44). London: Harvester Wheatsheaf.

    Google Scholar 

  • Ormrod, J. E. (2006). Educational psychology: Developing learners. Upper Saddle River, NJ: Pearson/Merrill Prentice Hall.

    Google Scholar 

  • Palincsar, A. S., & Brown, A. (1984). Reciprocal teaching of comprehension—Fostering and comprehension monitoring activities. Cognition and Instruction, 1, 117–175.

    Article  Google Scholar 

  • Pawson, R., & Tilley, N. (1997). Realistic evaluation. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Phye, G. D. (2001). Problem-solving instruction and problem-solving transfer: The correspondence issue. Journal of Educational Psychology, 93(3), 571–578.

    Article  Google Scholar 

  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory Into Practice, 41, 219–225.

    Article  Google Scholar 

  • Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications (2nd ed.). Upper Saddle River, NJ: Merrill Prentice-Hall.

    Google Scholar 

  • Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and representing problems. In J. E. Davidson & R. J. Sternberg (Eds.), The psychology of problem solving (pp. 3–30). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Ratner, C. (1991). Vygotsky’s sociohistorical psychology and its contemporary applications. New York: Plenum.

    Book  Google Scholar 

  • Reif, F. (2008). Applying cognitive science to education. Thinking and learning in scientific and other complex domains. Cambridge, MA: MIT Press.

    Google Scholar 

  • Robson, C. (2011). Real world research: A resource for social-scientists and practitioner-researchers (3rd ed.). Oxford: Blackwell.

    Google Scholar 

  • Rogoff, B. (1986). Adult assistance of children’s learning. In T. E. Raphael (Ed.), The contexts of school-based literacy (pp. 27–40). New York: Random House.

    Google Scholar 

  • Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.

    Google Scholar 

  • Rogoff, B., & Gauvain, M. (1986). A method for the analysis of patterns Illustrated with data on mother child instructional interaction. In J. Valsiner (Ed.), The individual subject and scientific psychology (pp. 261–289). New York: Plenum.

    Chapter  Google Scholar 

  • Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in memory. In R. C. Anderson & R. J. Spiro (Eds.), Schooling and the acquisition of knowledge (pp. 99–135). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Savery, J. R. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal of Problem-Based Learning, 1(1). https://doi.org/10.7771/1541-5015.1002.

  • Sayer, R. A. (2004). Realism and social science. London: Sage.

    Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.

    Article  Google Scholar 

  • Schoenfeld, A. H. (Ed.). (1983). Problem solving in the mathematics curriculum: A report, recommendations, and an annotated bibliography. Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.

    Google Scholar 

  • Schultz, K., & Lockhead, J. (1991). A view from physics. In M. U. Smith (Ed.), Towards a unified theory of problem solving: Views from the content domains (pp. 99–114). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Schunk, D. H. (1998). An educational psychologist’s perspective on cognitive neuroscience. Educational Psychology Review, 10, 411–417.

    Article  Google Scholar 

  • Schunk, D. H. (1999). Social-self interaction and achievement behaviour. Educational Psychology, 34, 219–227.

    Article  Google Scholar 

  • Schunk, D. H. (2000). Learning theories—An educational perspective. New Jersey: Prentice Hall.

    Google Scholar 

  • Schunk, D. (2012). Learning theories: An educational Perspective (6th ed.). Boston, MA: Pearson Education.

    Google Scholar 

  • Schunk, D. H., & Gunn, T. P. (1985). Modelled importance of task strategies and achievement beliefs: Effects on self-efficacy and skill development. Journal of Early Adolescence, 5, 247–258.

    Article  Google Scholar 

  • Schunk, D. H., & Pajares, F. (2009). Self-efficacy theory. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 35–53). New York, NY: Routledge.

    Google Scholar 

  • Schunk, D. H., & Swartz, C. W. (1993). Goals and progress feedback: Effects on self-efficacy and writing achievement. Contemporary Educational Psychology, 18(3), 337–354.

    Article  Google Scholar 

  • Schunk, D. H., Hanson, A. R., & Cox, P. D. (1987). Peer-model attributes and children’s achievement behaviors. Journal of Educational Psychology, 79, 54–61.

    Article  Google Scholar 

  • Siegler, R. S., DeLoache, J. S., & Eisenberg, N. (2011). How children develop (3rd ed.). New York: Worth.

    Google Scholar 

  • Simon, H., & Newell, A. (1972). Human problem solving. Eaglewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Singley, M. K., & Anderson, J. R. (1989). Transfer of cognitive skills. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Slavin, R. E. (1995). Cooperative learning: Theory, research, and practice (2nd ed.). Boston: Allyn and Bacon.

    Google Scholar 

  • Slavin, R. E. (2009). Cooperative learning. In G. McCulloch & D. Crook (Eds.), International encyclopedia of education (pp. 161–178). Abington: Routledge.

    Google Scholar 

  • Solaz-Portolés, J. J., & Sanjosé, V. (2007). Working memory in science problem solving: A review of research. Revista Mexicana de Psicología, 26(1), 79–90.

    Google Scholar 

  • Somekh, B., & Lewin, C. (2012). Research methods in the social sciences. New Delhi: Sage.

    Google Scholar 

  • Sternberg, R. J. (1984). Toward a triarchic theory of human intelligence. Behavioral and Brain Sciences, 7, 269–287.

    Article  Google Scholar 

  • Sternberg, R. J. (1996). Costs of expertise. In K. A. Ericsson (Ed.), The road to excellence: The acquisition of expert performance in the arts and sciences, sports and games (pp. 347–354). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Sternberg, R. (1998). Metacognition, abilities and developing expertise: What makes an expert student? Instructional Science, 26, 127–140.

    Article  Google Scholar 

  • Sternberg, R. J. (Ed.). (1999). Handbook of creativity. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R., & Bower, G. H. (1974). Transfer in part-whole and whole-part free recall: A comparative evaluation of theories. Journal of Verbal Learning and Verbal Behavior, 13, 1–26.

    Article  Google Scholar 

  • Sternberg, R. J., & Frensch, P. A. (1993). Mechanisms of transfer. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 25–38). Norwood, NJ: Ablex.

    Google Scholar 

  • Sternberg, R. J., & Pretz, J. (2005). Cognition and intelligence: Identifying the mechanisms of the mind (pp. 88–103). New York: Cambridge University Press.

    Google Scholar 

  • Stevens, R., & Palacio-Cayetano, J. (2003). Design and performance frameworks for constructing problem-solving simulations. Cell Biology Education, 2(Fall), 162–179.

    Article  Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4, 295–312.

    Article  Google Scholar 

  • Teong, S. K. (2003). The effect of metacognitive training on mathematical word problem solving. Journal of Computer Assisted learning, 19(1), 46–55.

    Article  Google Scholar 

  • Tudge, J. R. H., & Scrimsher, S. (2003). Lev S Vygotsky on education: A cultural-historical, interpersonal, and individual approach to development. In B. J. Zimmerman & D. H. Schunk (Eds.), Educational psychology. A century of contributions (pp. 207–228). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (A. R. Luria, M. Lopez-Morillas, & M. Cole [with J. V. Wertsch], Trans.) Cambridge, MA: Harvard University Press. (Original work [ca. 1930–1934]).

    Google Scholar 

  • Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychiatry and Psychology, 17(2), 89–100.

    Article  Google Scholar 

  • Woods, D. R., Crowe, C. M., Hoffman, T. W., & Wright, J. D. (1979). Major challenges to teaching problem-solving skills. Engineering Education, 70, 277–284.

    Google Scholar 

  • Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49(2), 121–169.

    Article  Google Scholar 

  • Zohar, A., & Dori, Y. J. (2012). Metacognition in science education: Trends in current research. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Mazorodze .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazorodze, R., Reiss, M.J. (2019). What We Know from the Literature. In: Cognitive and Metacognitive Problem-Solving Strategies in Post-16 Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24686-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24686-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24685-3

  • Online ISBN: 978-3-030-24686-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics