Skip to main content

Synthetic Seeds: Prospects and Advances in Cryopreservation

  • Chapter
  • First Online:
Synthetic Seeds

Abstract

Long-term storage of synthetic seeds can be accomplished using cryopreservation techniques. Cryopreservation allows the viability of encapsulated plant material to be conserved and maintained over a long period without modifications or genetic changes because the material is exposed to ultralow temperatures in liquid nitrogen (−196 °C), which decreases or even halts cellular metabolism. Cryopreservation has been found to be practical and efficient for the conservation of many species due to the small volume of material needed for storage, the simplification of transportation procedures and the minimal maintenance required compared to conventional storage methods. The main cryopreservation techniques applied to synthetic seeds are encapsulation-dehydration and encapsulation-vitrification. These techniques have been shown to be highly applicable for small explants that are sensitive to the conventional cryopreservation process, such as meristems and somatic embryos. However, the success of cryopreservation techniques for synthetic seeds depends on the type of encapsulated explant, on the capsule constitution and consistency and on research on the different cryopreservation stages in order to optimize the survival and regeneration of the plant material. Therefore, the present chapter is based on studies of the different stages of cryopreservation related to encapsulation techniques developed over time and on the major advances and innovations in cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbidinoukoun A, Doussoh A, Soussou Dangou J, Ahanhanzo C, Engelmann F (2018) Used of encapsulation-dehydration technique for short-term preservation of endangered sweet potato (Ipomoea batatas) cultivars. In Vitro Cell Dev Biol Plant 54:S40–S41

    Google Scholar 

  • Ai P-F, Lu L-P, Song J-J (2012) Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tissue Organ Cult 108:381–387

    Article  Google Scholar 

  • Al-Abdallat AM, Shibli RA, Akash MW, Rabbaa M, Al-Qudah T (2017) In vitro preservation of transgenic tomato (Solanum lycopersicum L.) plants overexpressing the stress-related SlAREB1 transcription factor. Int J Mol Sci 18:19. https://doi.org/10.3390/ijms18071477

    Article  PubMed Central  CAS  Google Scholar 

  • Al-Qurainy F et al (2017) Assessing genetic fidelity in regenerated plantlets of date palm cultivars after cryopreservation. Fresenius Environ Bull 26:1727–1735

    CAS  Google Scholar 

  • Bachiri Y, Gazeau C, Hansz J, Morisset C, Dereuddre J (1995) Successful cryopreservation of suspension cells by encapsulation-dehydration. Plant Cell, Tissue and Organ Cult 43(3):241–248

    Google Scholar 

  • Barraco G, Sylvestre I, Engelmann F (2011) Comparing encapsulation-dehydration and droplet-vitrification for cryopreservation of sugarcane (Saccharum spp.) shoot tips. Sci Hortic 130:320–324. https://doi.org/10.1016/j.scienta.2011.07.003

    Article  CAS  Google Scholar 

  • Baťková P, Pospíšilová J, Synková H (2008) Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Biol Plant 52:413–422. https://doi.org/10.1007/s10535-008-0085-5

    Article  Google Scholar 

  • Bayati S, Shams-Bakhsh M, Moini A (2011) Elimination of Grapevine virus A (GVA) by cryotherapy and electrotherapy. J Agric Sci Technol 13:442–450

    Google Scholar 

  • Benson EE (2008) Cryopreservation theory. In: Plant cryopreservation: A practical guide. Springer, pp, pp 15–32

    Chapter  Google Scholar 

  • Bettoni JC, Dalla Costa M, Souza JA, Volk GM, Nickel O, da Silva FN, Kretzschmar AA (2018) Cryotherapy by encapsulation-dehydration is effective for in vitro eradication of latent viruses from ‘Marubakaido’ apple rootstock. J Biotechnol 269:1–7. https://doi.org/10.1016/j.jbiotec.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Production of virus-free plants. In: Plant tissue culture: an introductory Text. Springer, pp 227–243

    Google Scholar 

  • Bi WL et al (2017) Cryopreservation of grapevine (Vitis spp.)-a review. In Vitro Cell Dev Biol Plant 53:449–460. https://doi.org/10.1007/s11627-017-9822-9

    Article  CAS  Google Scholar 

  • Bi WL, Hao XY, Cui ZH, Volk GM, Wang QC (2018) Droplet-vitrification cryopreservation of in vitro-grown shoot tips of grapevine (Vitis spp.). In Vitro Cell Dev Biol Plant 54:590–599. https://doi.org/10.1007/s11627-018-9931-0

    Article  Google Scholar 

  • Bonnart R, Volk GM (2010) Increased efficiency using the encapsulation-dehydration cryopreservation technique for Arabidopsis thaliana. CryoLetters 31:200–205

    Google Scholar 

  • Bradaï F, Almagro-Bastante J, Sánchez-Romero C (2017) Cryopreservation of olive somatic embryos using the droplet-vitrification method: the importance of explant culture conditions. Sci Hortic 218:14–22

    Article  Google Scholar 

  • Brunakova K, Cellarova E (2016) Conservation strategies in the genus Hypericum via cryogenic treatment. Front Plant Sci 7:12. https://doi.org/10.3389/fpls.2016.00558

  • Bustam BM, Dixon K, Bunn E (2016) A cryopreservation protocol for ex situ conservation of terrestrial orchids using asymbiotic primary and secondary (adventitious) protocorms. In Vitro Cell Dev Biol Plant 52:185–195. https://doi.org/10.1007/s11627-015-9732-7

    Article  Google Scholar 

  • Carmona-Martin E, Regalado JJ, Peran-Quesada R, Encina CL (2018) Cryopreservation of rhizome buds of Asparagus officinalis L. (cv. Morado de Huetor) and evaluation of their genetic stability. Plant Cell Tissue Organ Cult 133:395–403. https://doi.org/10.1007/s11240-018-1392-y

    Article  CAS  Google Scholar 

  • Cejas I, Vives K, Laudat T, González-Olmedo J, Engelmann F, Martínez-Montero ME, Lorenzo JC (2012) Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Rep 31(11):2065–2073

    Article  CAS  PubMed  Google Scholar 

  • Chandrabalan DC, Clyde MM, Normah MN (2011) Two-step preconditioning – a feasible method for cryopreservation of Fortunella polyandra shoot tips using vitrification Technique. In: Panis B, Lynch P (eds) International symposium on cryopreservation in horticultural species, vol 908. Acta Horticulturae. International Society of Horticultural Science, Leuven 1, pp 289–296

    Google Scholar 

  • Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation-vitrification method. CryoLetters 25:51–58

    PubMed  Google Scholar 

  • Chen C (2004) Humidity in plant tissue culture vessels. Biosyst Eng 88:231–241

    Article  Google Scholar 

  • Chen HY, Liu J, Pan C, Yu JW, Wang QC (2018) In vitro regeneration of adventitious buds from leaf explants and their subsequent cryopreservation in highbush blueberry. Plant Cell Tissue Organ Cult 134:193–204. https://doi.org/10.1007/s11240-018-1412-y

    Article  CAS  Google Scholar 

  • Choudhary R, Malik SK, Chaudhury R (2018) Development of an efficient cryoconservation protocol for Himalayan mulberry (Morus laevigata Wall. ex Brandis) using dormant axillary buds as explants. Indian J Exp Biol 56:342–350

    Google Scholar 

  • Ciringer T, Martin C, Sajna N, Kaligaric M, Ambrozic-Dolinsek J (2018) Cryopreservation of an endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and encapsulation-vitrification. In Vitro Cell Dev Biol Plant 54:565–575. https://doi.org/10.1007/s11627-018-9917-y

    Article  CAS  Google Scholar 

  • Clavero-Ramirez I, Galvez-Farfan J, Lopez-Aranda JM, Gonzalez-Benito ME (2005) Apex cryopreservation of several strawberry genotypes by two encapsulation-dehydration methods. CryoLetters 26:17–24

    CAS  PubMed  Google Scholar 

  • Coelho N, Gonzalez-Benito ME, Romano A (2014) Approaches for the cryopreservation of Plantago algarbiensis, a rare endemic species of the Algarve. CryoLetters 35:521–529

    Google Scholar 

  • Cordeiro SZ, Simas NK, Henriques AB, Sato A (2014) In vitro conservation of Mandevilla moricandiana (Apocynaceae): short-term storage and encapsulation-dehydration of nodal segments. In Vitro Cell Dev Biol Plant 50:326–336. https://doi.org/10.1007/s11627-014-9600-x

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distabanjong K, Distabanjong C, Jang SW (2015) Developing regeneration system for cryopreservation in sugarcane (Saccharum officinarum L.). In: Canhoto JM, Correia SI (eds) Viii international symposium on in vitro culture and horticultural breeding, vol 1083. Acta Horticulturae. International Society Horticultural Science, Leuven 1, pp 427–433

    Google Scholar 

  • Dulloo M et al (2009) Cost efficiency of cryopreservation as a long-term conservation method for coffee genetic resources. Crop Sci 49:2123–2138

    Article  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Dussert S, Duval Y (1994) Effect of various sugars and polyols on the tolerance to desiccation and freezing of oil palm polyembryonic cultures. Seed Sci Res 4:307–313. https://doi.org/10.1017/s0960258500002348

    Article  CAS  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433. https://doi.org/10.1079/ivp2004541

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm: current research progress and applications. JIRCAS, Tsukuba and IPGRI, Rome

    Google Scholar 

  • Fabian A, Jager K, Darko E, Barnabas B (2008) Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification. Acta Physiol Plant 30:737–744. https://doi.org/10.1007/s11738-008-0176-0

    Article  CAS  Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. CryoLetters 11

    Google Scholar 

  • Fatima S, Mujib A, Nasim SA, Siddiqui ZH (2009) Cryopreservation of embryogenic cell suspensions of Catharanthus roseus L. (G) Don. Plant Cell Tissue Organ Cult 98:1–9. https://doi.org/10.1007/s11240-009-9532-z

    Article  CAS  Google Scholar 

  • Feng C-H, Cui Z-H, Li B-Q, Chen L, Ma Y-L, Zhao Y-H, Wang Q-C (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tissue Organ Cult 112:369–378

    Article  CAS  Google Scholar 

  • Fowler A, Toner M (2006) Cryo-injury and biopreservation. Ann N Y Acad Sci 1066:119–135

    Article  CAS  Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410. https://doi.org/10.1104/pp.94.2.406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamez-Pastrana R, Martinez-Ocampo Y, Beristain CI, Gonzalez-Arnao MT (2004) An improved cryopreservation protocol for pineapple apices using encapsulation-vitrification. CryoLetters 25:405–414

    CAS  PubMed  Google Scholar 

  • Garcia R, Pacheco G, Vianna M, Mansur E (2011) In vitro conservation of Passiflora suberosa L.: slow growth and cryopreservation. CryoLetters 32:377–388

    Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. CryoLetters 27:155–168

    CAS  PubMed  Google Scholar 

  • Gonzalez-Arnao MT, Ravelo MM, Villavicencio CU, Montero MM, Engelmann F (1998) Cryopreservation of pineapple (Ananas comosus) apices. Cryo Lett 19:375–382

    Google Scholar 

  • Gonzalez-Arnao M, Engelmann F, Urra V, Morenza M, Rios A Cryopreservation of citrus apices using the encapsulation-dehydration technique. In: Cryopreservation of tropical plant germplasm: current research progress and application. Proceedings of an international workshop, Tsukuba, Japan, October, 1998a, 2000. International Plant Genetic Resources Institute (IPGRI), pp 217–221

    Google Scholar 

  • Gonzalez-Arnao M, Juarez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. CryoLetters 24:85–94

    CAS  PubMed  Google Scholar 

  • Gonzalez-Benito ME, Kremer C, Ibanez MA, Martin C (2016) Effect of antioxidants on the genetic stability of cryopreserved mint shoot tips by encapsulation-dehydration. Plant Cell Tissue Organ Cult 127:359–368. https://doi.org/10.1007/s11240-016-1056-8

    Article  CAS  Google Scholar 

  • Gulati R (2018) Strategies for sustaining plant germplasm evaluation and conservation a review. Life Sci Inform 4:313–320

    Google Scholar 

  • Halmagyi A, Deliu C (2011) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) shoot apices by encapsulation-dehydration. Contrib Bot 46

    Google Scholar 

  • Hirai D, Sakai A (1999) Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res 42:153–160

    Article  Google Scholar 

  • Javed SB, Alatar AA, Anis M, Faisal M (2017) Synthetic seeds production and germination studies, for short term storage and long distance transport of Erythrina variegata L.: a multipurpose tree legume. Ind Crop Prod 105:41–46

    Article  CAS  Google Scholar 

  • Jeon SM, Arun M, Lee S-Y, Kim CK (2015) Application of encapsulation-vitrification in combination with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips. Sci Hortic 194:91–99

    Article  CAS  Google Scholar 

  • Kami D, Kikuchi T, Sugiyama K, Suzuki T (2009) Cryopreservation of shoot apices of cranberry and highbush blueberry in-vitro cultures. Cryobiology 59:411–412. https://doi.org/10.1016/j.cryobiol.2009.10.162

    Article  Google Scholar 

  • Kaviani B, Negandar N (2017) Propagation, micropropagation and cryopreservation of Buxus hyrcana Pojark., an endangered ornamental shrub. S Afr J Bot 111:326–335. https://doi.org/10.1016/j.sajb.2017.04.004

    Article  CAS  Google Scholar 

  • Kaya E, Souza FVD (2017) Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cell Dev Biol Plant 53:410–417. https://doi.org/10.1007/s11627-017-9837-2

    Article  CAS  Google Scholar 

  • Kaya E, Alves A, Rodrigues L, Jenderek M, Hernandez-Ellis M, Ozudogru A, Ellis D (2013) Cryopreservation of eucalyptus genetic resources. CryoLetters 34:608–618

    CAS  PubMed  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  • Kulus D, Abratowska A (2017) (Cryo)conservation of Ajania pacifica (Nakai) Bremer et Humphries shoot tips via encapsulation-dehydration technique. CryoLetters 38:387–398

    Google Scholar 

  • Kulus D, Abratowska A, Mikula A (2018a) Morphogenetic response of shoot tips to cryopreservation by encapsulation-dehydration in a solid mutant and periclinal chimeras of Chrysanthemum × grandiflorum/Ramat./Kitam. Acta Physiol Plant 40:13. https://doi.org/10.1007/s11738-017-2593-4

  • Kulus D, Serocka M, Mikuła A (2018b) Effect of various preculture and osmotic dehydration conditions on cryopreservation efficiency and morphogenetic response of Chrysanthemum shoot tips. Acta Sci Pol Hortorum Cult 17:17

    Google Scholar 

  • Kumar S, Sharma S (2005) Somatic embryogenesis and cryopreservation of walnut (Juglans regia L.) and pecan (Carya illinoensis Koch). In: Chauhan JS, Sharma SD, Sharma RC, Sharma RC, Rehalia AS, Kumar K (eds) Proceedings of the VIIth international symposium on temperate zone fruits in the tropics and subtropics, Pt 2. Acta Horticulturae, vol 696. International Society Horticultural Science, Leuven 1, pp 143–147. doi:https://doi.org/10.17660/ActaHortic.2005.696.24

  • Kushnarenko SV, Romadanova NV, Zhumabaeva BA, Reed BM (2018) In vitro Storage and cryopreservation of clonally propagated plant germplasm in Kazakhstan. Cryobiology 85:186–187

    Article  Google Scholar 

  • le Roux ML, Botha AM, van der Vyver C (2016) Somatic embryogenesis and cryopreservation of South African bread wheat (Triticum aestivum L.) genotypes. S Afr J Bot 106:78–88. https://doi.org/10.1016/j.sajb.2016.05.018

    Article  CAS  Google Scholar 

  • Li BQ, Feng CH, Wang MR, Hu LY, Volk G, Wang QC (2015) Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J Biotechnol 214:182–191. https://doi.org/10.1016/j.jbiotec.2015.09.030

    Article  CAS  PubMed  Google Scholar 

  • Li J-W, Chen H-Y, Li X-Y, Zhang Z, Blystad D-R, Wang Q-C (2017) Cryopreservation and evaluations of vegetative growth, microtuber production and genetic stability in regenerants of purple-fleshed potato. Plant Cell Tissue Organ Cult 128:641–653

    Article  CAS  Google Scholar 

  • Lia JW, Hosokawa M, Nabeshima T, Motoki K, Yamada H, Wang QC (2019) Cryopreservation of viroid-infected Chrysanthemum shoot tips. Sci Hortic 244:1–9. https://doi.org/10.1016/j.scienta.2018.09.004

    Article  CAS  Google Scholar 

  • Lineros Y, Balocchi C, Munoz X, Sanchez M, Rios D (2018) Cryopreservation of Pinus radiata embryogenic tissue: effects of cryoprotective pretreatments on maturation ability. Plant Cell Tissue Organ Cult 135:357–366. https://doi.org/10.1007/s11240-018-1469-7

    Article  CAS  Google Scholar 

  • Lynch PT et al (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181:47–56. https://doi.org/10.1016/j.plantsci.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  • Lynch PT, Souch GR, Zamecnik J, Harding K (2016) Optimization of water content for the cryopreservation of Allium sativum in vitro cultures by encapsulation-dehydration. CryoLetters 37:308–317

    Google Scholar 

  • Makowski D, Tomiczak K, Rybczynski JJ, Mikula A (2016) Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiol Plant 38:12. https://doi.org/10.1007/s11738-015-2037-y

  • Martín C, Kremer C, González I, González-Benito ME (2015) Influence of the cryopreservation technique, recovery medium and genotype on genetic stability of mint cryopreserved shoot tips. Plant Cell Tissue Organ Cult 122:185–195

    Article  CAS  Google Scholar 

  • Mathew L, McLachlan A, Jibran R, Burritt DJ, Pathirana R (2018) Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma 255:1065–1077. https://doi.org/10.1007/s00709-018-1215-3

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T (2017) Cryopreservation of plant genetic resources: conventional and new methods. Rev Agric Sci 5:13–20

    Article  Google Scholar 

  • Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia-japonica) by encapsulation-vitrification method. CryoLetters 16:189–196

    Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys Cell Phys 247:C125–C142

    Article  CAS  Google Scholar 

  • Medeiros CD, Cavalcante J, Alsina O (2006) Estudo da desidratação osmótica da fruta da palma (figo da Índia). Revista Brasileira de Produtos Agroindustriais 8:153–162

    Article  Google Scholar 

  • Merhy TSM, Vianna MG, Garcia RO, Pacheco G, Mansur E (2014) Cryopreservation of Passiflora pohlii nodal segments and assessment of genetic stability of regenerated plants. CryoLetters 35:204–215

    Google Scholar 

  • Ming-Hua Y, Sen-Rong H (2010) A simple cryopreservation protocol of Dioscorea bulbifera L. embryogenic calli by encapsulation-vitrification. Plant Cell Tissue Organ Cult 101:349–358

    Article  Google Scholar 

  • Moges AD, Shibli RA, Karam NS (2004) Cryopreservation of African violet (Saintpaulia ionantha Wendl.) shoot tips. In Vitro Cell Dev Biol Plant 40:389–395. https://doi.org/10.1079/ivp2004536

    Article  CAS  Google Scholar 

  • Mubbarakh SA, Izhar NA, Rajasegar A, Subramaniam S (2014) Establishment of encapsulation-dehydration technique for in vitro fragmented explants of Rosa hybrida L. cv. Helmut Schmidt. Emir J Food Agric 26:565–576. https://doi.org/10.9755/ejfa.v26i6.18024

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Neal Stewart JRC (2016) Plant biotechnology and genetics: principles, techniques, and applications. Wiley

    Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginate-coated invitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206. https://doi.org/10.1016/0168-9452(92)90151-b

    Article  CAS  Google Scholar 

  • Ozudogru EA, Kaya E (2012) Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: comparison of three vitrification-based methods. CryoLetters 33:363–375

    Google Scholar 

  • Ozudogru EA, Kirdok E, Kaya E, Capuana M, Benelli C, Engelmann F (2011) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based techniques. CryoLetters 32:99–110

    Google Scholar 

  • Pammenter NW, Berjak P, Wesley-Smith J, Vander Willigen C (2002) Experimental aspects of drying and recovery. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 93–110

    Chapter  Google Scholar 

  • Panis B, Totte N, VanNimmen K, Withers LA, Swennen R (1996) Cryopreservation of banana (Musa spp) meristem cultures after preculture on sucrose. Plant Sci 121:95–106. https://doi.org/10.1016/s0168-9452(96)04507-4

    Article  CAS  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55. https://doi.org/10.1016/j.plantsci.2004.07.022

    Article  CAS  Google Scholar 

  • Paques M, Poissonnier M, Dumas E (1996) Monod V cryopreservation of dormant and non dormant broad-leaved trees. In: III International symposium on in vitro culture and horticultural breeding, vol 447, pp 491–498

    Google Scholar 

  • Pathirana R, McLachlan A, Hedderley D, Panis B, Carimi F (2016) Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification. Acta Physiol Plant 38:11. https://doi.org/10.1007/s11738-015-2026-1

  • Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus × domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774. https://doi.org/10.1007/s002990000195

    Article  CAS  PubMed  Google Scholar 

  • Paulet F, Engelmann F, Glaszmann J-C (1993) Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep 12:525–529

    Google Scholar 

  • Pence VC et al (2017) Survival and genetic stability of shoot tips of Hedeoma todsenii RSIrving after long-term cryostorage. In Vitro Cell Dev Biol Plant 53:328–338. https://doi.org/10.1007/s11627-017-9854-1

    Article  CAS  Google Scholar 

  • Pettinelli JD, Soares BD, Cantelmo L, Garcia RD, Mansur E, Engelmann F, Gagliardi RF (2017) Cryopreservation of somatic embryos from Petiveria alliacea L. by different techniques based on vitrification. In Vitro Cell Dev Biol Plant 53:339–345. https://doi.org/10.1007/s11627-017-9820-y

    Article  CAS  Google Scholar 

  • Phunchindawan M, Hirata K, Sakai A, Miyamoto K (1997) Cryopreservation of encapsulated shoot primordia induced in horseradish (Armoracia rusticana) hairy root cultures. Plant Cell Rep 16:469–473. https://doi.org/10.1007/s002990050262

    Article  CAS  PubMed  Google Scholar 

  • Pieruzzi FP, Dias LLC, Balbuena TS, Floh EIS, Santa-Catarina C, ALWd S (2011) Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot 108:337–345. https://doi.org/10.1093/aob/mcr133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova E, Bukhov N, Popov A, Kim H-H (2010) Cryopreservation of protocorm-like bodies of the hybrid orchid Bratonia (Miltonia flavescens × Brassia longissima). CryoLetters 31:426–437

    Google Scholar 

  • Popova E, Kim HH, Saxena PK, Engelmann F, Pritchard HW (2016) Frozen beauty: The cryobiotechnology of orchid diversity. Biotechnol Adv 34:380–403. https://doi.org/10.1016/j.biotechadv.2016.01.001

    Article  PubMed  Google Scholar 

  • Prudente D, Paiva R (2017) Plant cryopreservation: biochemical aspects. J Cell Dev Biol 1(1):1

    Article  Google Scholar 

  • Prudente DD, Paiva R, Nery FC, Paiva PDD, Alves JD, Maximo WPF, Silva LC (2017) Compatible solutes improve regrowth, ameliorate enzymatic antioxidant systems, and reduce lipid peroxidation of cryopreserved Hancornia speciosa Gomes lateral buds. In Vitro Cell Dev Biol Plant 53:352–362. https://doi.org/10.1007/s11627-017-9830-9

    Article  CAS  Google Scholar 

  • Prudente DO, Paiva R, Souza LB, Paiva PDO (2018) Cryotherapy as a technique for virus elimination in ornamental species. Plant Cell Cult Micropropag 13:29–33

    Google Scholar 

  • Rabba'a MM, Shibli RA, Shatnawi MA (2012) Cryopreservation of Teucrium polium L. shoot-tips by vitrification and encapsulation-dehydration. Plant Cell Tissue Organ Cult 110:371–382. https://doi.org/10.1007/s11240-012-0158-1

    Article  Google Scholar 

  • Rafique T et al (2016) Cryopreservation of shoot-tips from different sugarcane varieties using D cryo-plate technique. Pak J Agric Sci 53:151–158. https://doi.org/10.21162/pakjas/16.5018

    Article  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants – a review. Biotechnol Adv 27:671–679. https://doi.org/10.1016/j.biotechadv.2009.04.025

    Article  PubMed  Google Scholar 

  • Ramon M, Geuns J, Swennen R, Panis B (2002) Polyamines and fatty acids in sucrose precultured banana meristems and correlation with survival rate after cryopreservation. Cryo Letters 23(6):345–352

    CAS  PubMed  Google Scholar 

  • Reed B (2018) Culture conditions are as important as the protocol in successful cryopreservation. Cryobiology 80:170. https://doi.org/10.1016/j.cryobiol.2017.10.065

    Article  Google Scholar 

  • Ren L, Zhang D, Shen XH, Reed BM (2014) Antioxidants and anti-stress compounds improve the survival of cryopreserved Arabidopsis seedlings. In: Reed BM (ed) Ii international symposium on plant cryopreservation, vol 1039. Acta Horticulturae, vol 1. International Society of Horticultural Science, Leuven, pp 57–61

    Google Scholar 

  • Rohini MR, Malik SK, Choudhary R, Kaur S, Uchoi A, Chaudhury R (2016) Storage behavior and cryopreservation studies in Indian rough lemon (Citrus jambhiri): a promising rootstock for long-term conservation. Turk J Agric For 40:865–873. https://doi.org/10.3906/tar-1511-94

    Article  CAS  Google Scholar 

  • Ryynahen L, Haggman H (1999) Substitution of ammonium ions during cold hardening and post-thaw cultivation enhances recovery of cryopreserved shoot tips of Betula pendula. J Plant Physiol 154:735–742. https://doi.org/10.1016/s0176-1617(99)80252-1

    Article  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) Development of PVS-Based vitrification and encapsulation-vitrification protocols. In: Plant cryopreservation: a practical guide. Corvalis, Springer, pp 33–58

    Chapter  Google Scholar 

  • Salama A, Popova E, Jones MP, Shukla MR, Fisk NS, Saxena PK (2018) Cryopreservation of the critically endangered golden paintbrush (Castilleja levisecta Greenm.): from nature to cryobank to nature. In Vitro Cell Dev Biol Plant 54:69–78. https://doi.org/10.1007/s11627-018-9888-z

    Article  CAS  Google Scholar 

  • Sharaf SA, Shibli RA, Kasrawi MA, Baghdadi SH (2012) Cryopreservation of wild Shih (Artemisia herba-alba Asso.) shoot-tips by encapsulation-dehydration and encapsulation-vitrification. Plant Cell Tissue Organ Cult 108:437–444

    Article  CAS  Google Scholar 

  • Shibli R, Al-Juboory K (2000) Cryopreservation of ‘Nabali’ olive (Olea europea l.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. Cryo Letters 21:357–366

    Google Scholar 

  • Shin DJ, Lee HE, Bae CH, Park SU, Kang HN, Kim HH (2014) Development of an encapsulation-vitrification protocol for Rubia akane (Nakai) hairy roots: a comparison with non-encapsulation. CryoLetters 35:377–384

    Google Scholar 

  • Silva LC, Paiva R, Swennen R, Andrè E, Panis B (2013) Shoot-tip cryopreservation by droplet vitrification of Byrsonima intermedia A. Juss.: a woody tropical and medicinal plant species from Brazilian Cerrado. CryoLetters 34:338–348

    Google Scholar 

  • Sipen P, Anthony P, Davey MR (2011) Cryopreservation of scalps of Malaysian bananas using a pregrowth method. CryoLetters 32:197–205

    CAS  PubMed  Google Scholar 

  • Souza FVD et al (2017) Cryopreservation of Hamilin sweet orange (Citrus sinensis (L.) Osbeck) embryogenic calli using a modified aluminum cryo-plate technique. Sci Hortic 224:302–305. https://doi.org/10.1016/j.scienta.2017.06.042

    Article  CAS  Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, FL, pp 199–226

    Google Scholar 

  • Subaih WS, Shatnawi MA, Shibli RA (2007) Cryopreservation of date palm (Phoenix dactylifera) embryogenic callus by encapsulation-dehydration, vitrification and encapsulation-vitrification. Jordan J Agric Sci 3:156–171

    Google Scholar 

  • Suranthran P, Gantait S, Sinniah UR, Subramaniam S, Alwee S, Roowi SH (2012) Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regul 66:101–109. https://doi.org/10.1007/s10725-011-9633-7

    Article  CAS  Google Scholar 

  • Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol Rep 2:123–131. https://doi.org/10.1007/s11816-008-0056-5

    Article  Google Scholar 

  • Tanaka D, Niino T, Isuzugawa K, Hikage T, Uemura M (2004) Cryopreservation of shoot apices of in-vitro grown gentian plants: comparison of vitrification and encapsulation-vitrification protocols. CryoLetters 25:167–176

    PubMed  Google Scholar 

  • Thobunluepop P, Pawelzik E, Vearasilp S (2009) Possibility of sweet corn synthetic seed production. Pak J Biol Sci 12:1085

    Article  CAS  PubMed  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  CAS  PubMed  Google Scholar 

  • Tomaz I, Šeparović M, Štambuk P, Preiner D, Maletić E, Karoglan Kontić J (2018) Effect of freezing and different thawing methods on the content of polyphenolic compounds of red grape skins. J Food Process Preserv 42:e13550

    Article  CAS  Google Scholar 

  • Uchendu EE, Keller ERJ (2016) Melatonin-loaded alginate beads improve cryopreservation of yam (Dioscorea alata and D. cayenensis). CryoLetters 37:77–87

    Google Scholar 

  • Uchendu E, Reed B (2008) Desiccation tolerance and cryopreservation of in vitro grown blueberry and cranberry shoot tips. In: IX International vaccinium symposium, vol 810, pp 567–574

    Google Scholar 

  • Uchendu EE, Muminova M, Gupta S, Reed BM (2010) Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cell Dev Biol Plant 46:386–393. https://doi.org/10.1007/s11627-010-9292-9

    Article  CAS  Google Scholar 

  • Uchendu E, Shukla M, Reed B, Saxena P (2013) An efficient method for cryopreservation of St John’s wort and tobacco: role of melatonin. In: II International symposium on plant cryopreservation, vol 1039, pp 233–241

    Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2014) An efficient method for cryopreservation of St John’s wort and tobacco: role of melatonin. In: Reed BM (ed) Ii international symposium on plant cryopreservation, vol 1039. Acta Horticulturae. International Society of Horticultural Science, Leuven 1, pp 233–241

    Google Scholar 

  • Van Eck J, Keen P (2009) Continued expression of plant-made vaccines following long-term cryopreservation of antigen-expressing tobacco cell cultures. In Vitro Cell Dev Biol Plant 45:750–757. https://doi.org/10.1007/s11627-009-9231-9

    Article  CAS  Google Scholar 

  • Volk GM, Caspersen AM (2007) Plasmolysis and recovery of different cell types in cryoprotected shoot tips of Mentha × piperita. Protoplasma 231:215–226. https://doi.org/10.1007/s00709-007-0251-1

    Article  PubMed  Google Scholar 

  • Volk GM, Shepherd AN, Bonnart R (2018) Successful cryopreservation of Vitis shoot tips: novel pre-treatment combinations applied to nine species. CryoLetters 39:322–330

    Google Scholar 

  • Wang QC, Valkonen JPT (2009) Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci 14:119–122. https://doi.org/10.1016/j.tplants.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tanne E, Arav A, Gafny R (2000) Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tissue Organ Cult 63:41–46

    Article  CAS  Google Scholar 

  • Wang Q, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321–327. https://doi.org/10.1016/S0168-9452(03)00091-8

    Article  CAS  Google Scholar 

  • Wang Q, Laamanen J, Uosukainen M, Valkonen JP (2005) Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation–vitrification and encapsulation–dehydration. Plant Cell Rep 24:280–288

    Article  PubMed  CAS  Google Scholar 

  • Wang MR, Chen L, da Silva JAT, Volk GM, Wang QC (2018a) Cryobiotechnology of apple (Malus spp.): development, progress and future prospects. Plant Cell Rep 37:689–709. https://doi.org/10.1007/s00299-018-2249-x

    Article  CAS  PubMed  Google Scholar 

  • Wang MR et al (2018b) Cryopreservation of virus: a novel biotechnology for long-term preservation of virus in shoot tips. Plant Methods 14:10. https://doi.org/10.1186/s13007-018-0312-9

    Article  CAS  Google Scholar 

  • Wyse SV, Dickie JB, Willis KJ (2018) Seed banking not an option for many threatened plants. Nat Plants 4:848–850. https://doi.org/10.1038/s41477-018-0298-3

    Article  PubMed  Google Scholar 

  • Zalewska M, Kulus D (2013) Cryopreservation of in vitro-grown shoot tips of Chrysanthemum by encapsulation-dehydration. Folia Hortic 25:133. https://doi.org/10.2478/fhort-2013-0015

    Article  Google Scholar 

  • Zarghami R, Pirseyedi M, Hasrak S, Sardrood BP (2008) Evaluation of genetic stability in cryopreserved Solanum tuberosum. Afr J Biotechnol 7:2798–2802

    Google Scholar 

  • Zhang JM et al (2014) Optimization of droplet-vitrification protocol for carnation genotypes and ultrastructural studies on shoot tips during cryopreservation. Acta Physiol Plant 36:3189–3198. https://doi.org/10.1007/s11738-014-1685-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira Prudente, D., de Souza, L.B., Paiva, R. (2019). Synthetic Seeds: Prospects and Advances in Cryopreservation. In: Faisal, M., Alatar, A. (eds) Synthetic Seeds . Springer, Cham. https://doi.org/10.1007/978-3-030-24631-0_20

Download citation

Publish with us

Policies and ethics