Abstract
Crowdsensing can be an enabler of the Social Internet of Things (SIoT), among a plethora of other systems, elements, infrastructure, and applications. Although in the short term crowdsensing can be supported within the traditional wireless cellular infrastructure, in the longer term, it will be an important component of the evolving Smart City paradigm. Given the expected increase of urban populations in the next 35 years, this application not only will assist in the process of “greening the environment” but also make city living more livable. Clearly, mobility is at the core of crowdsensing in particular, and SIoT in general. While several mobility management techniques have emerged, an extensive body of applicable research has been developed in the past twenty years, in the form of the Mobile IPv6 (MIPv6) and related protocols. As of press time over seventy RFCs had been published by the IETF on MIPv6 and related MIPv6 mobility protocols; yet, MIPv6 has received relatively little attention up to now in the IoT. Broad deployment of SIoT will benefit from MIPv6 technologies. This chapter describes key MIPv6 features and its propitious applicability to crowdsensing and SIoT, particularly given 3rd Generation Partnership Project (3GPP) recent adoption of it for some 4G/5G scenarios.
Keywords
- Crowdsensing
- Mobile crowdsensing
- Social Internet of Things (SIoT)
- Mobile IPv6 (MIPv6)
- Mobility
- Localization
- Location based services (LBS)
- Wireless
- Multimedia encoding
- 3GPP
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Baqer, M., Kamal, A.: S-sensors: integrating physical world inputs with social networks using wireless sensor networks. In: 2009 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 213–218 (2009)
Baqer, M.: Enabling collaboration and coordination of wireless sensor networks via social networks. In: Proceedings of 6th IEEE International Conference on Distributed Computing in Sensor Systems Workshops (DCOSSW), pp. 1–2 (2010)
Guinard, D., Fischer, M., Trifa, V.: Sharing using social networks in a composable web of things. In: Proceedings of 8th IEEE International Conference of Pervasive Computing Communication Workshops (PERCOM), pp. 702–707 (2010)
Atzori, L., Iera, A., et al.: The Social Internet Of Things (SIoT) – when social networks meet the internet of things: concept, architecture and network characterization, computer networks, 2012. Elsevier 56(16), 3594–3608 (2012)
Atzori, L., Iera, A., Morabito, G., SIoT: Giving a social structure to the Internet of Things. IEEE Commun. Lett. 15(11) (2011). https://doi.org/10.1109/lcomm.2011.090911.111340
Nitti, M., Girau, R., et al.: A subjective model for trustworthiness evaluation in the Social Internet of Things. In: Proceedings of IEEE 23rd International Symposium Personal Indoor Mobile Radio Communications (PIMRC), pp. 18–23 (2012)
Lee, G.M., Rhee, W.S., Crespi, N.: Proposal of a New Work Item on Social and Device Networking, ITU Telecommunications Standard, Sector, SG13 Rapporteur Group Meeting. Switzerland, Geneva (2013)
Ciortea, A., Boissier, O., et al.: Reconsidering The Social Web of Things: Position Paper, Proceedings of ACM Conference Pervasive Ubiquitous Computing, UbiComp’13 Adjunct, pp. 1535–1544 (2013)
Xu, L.D., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Indust. Informat. 10(4) (2014). https://doi.org/10.1109/tii.2014.2300753
Ortiz, A.M., Hussein, D., et al.: The cluster between internet of things and social networks: review and research challenges. IEEE Internet of Things J. 1(3) (2014). https://doi.org/10.1109/jiot.2014.2318835
Afzala, B., Umaira, M., et al.: Enabling IoT platforms for social IoT applications: vision, feature mapping, and challenges. Future Generat. Comput. Syst. 92, 718–731 (2019)./https://doi.org/10.1016/j.future.2017.12.002
Minoli, D.: Enterprise Architecture A to Z: Frameworks. SOA, and Infrastructure Technology, Auerbach Publisher, Business Process Modeling (2008)
Cardone, G., Corradi, A., et al: ParticipAct: a large-scale crowdsensing platform. IEEE Trans. Emerg. Topics Comput. 1, 21–32 (2016)
Wang, C., Gaimu, X., et al.: Smart mobile crowdsensing with urban vehicles: a deep reinforcement learning perspective. IEEE Access 7 15 March 2019. https://doi.org/10.1109/access.2019.2905263
Abualsaud, K., Elfouly, T.M., et al.: A survey on mobile crowd-sensing and its applications in the IoT Era. IEEE Access 7 10 December 2018. https://doi.org/10.1109/access.2018.2885918
Hou, F., Pei, Y., Sun, J.: Mobile crowd sensing: incentive mechanism design. SpringerBriefs Electr. Comput. Eng. (2019). https://doi.org/10.1007/978-3-030-01024-9
Concone, F., Lo Re, G., Morana, M.: A fog-based application for human activity recognition using personal smart devices. In: ACM Transactions on Internet Technology (TOIT)—Special Issue on Fog, Edge, and Cloud Integration, vol. 19, Issue 2, April 2019, Article No. 20. https://doi.org/10.1145/3266142
Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11) 32–39 (2016)
Minoli, D.: Building the Internet of Things with IPv6 and MIPv6 (Wiley, 2013). Mobile Video with Mobile IPv6 (Wiley 2012)
Xu, C., Li, S., et al: Crowdsensing the speaker count in the wild: implications and applications. IEEE Commun. Mag. 52(10), pp. 92–99 (2014)
Wang, Q., Wang, W. et al.: Smart Media Pricing (SMP): Non-Uniform Packet Pricing Game for Wireless Multimedia Communications. In: Proceedings of IEEE INFOCOM, 5th Workshop on Smart Data Pricing, April 2016
Xiping, H., Liu, Q., et al.: A Mobile crowdsensing system enhanced by cloud-based social networking services. In: Proceedings of the First International Workshop on Middleware for Cloud-Enabled Sensing, p. 3. ACM (2013)
Bei, P., Zheng, Y., et al: Crowd sensing of traffic anomalies based on human mobility and social media. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 344–353. ACM (2013)
Jamil, S.S., Basalamah, A., et al: Demonstrating Map++: a crowd-sensing system for automatic map semantics identification. In: 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 152–154. IEEE (2014)
Vladimir C., Gruteser, M.: Crowdsensing maps of on-street parking spaces. In: 2013 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 115–122. IEEE (2013)
Mikko, R., Törmä, S., Kratinov, D.: Mobile Crowdsensing Of Parking Space Using Geofencing And Activity Recognition. In: 10th ITS European Congress, Helsinki, Finland, pp. 16–19. 2014
Károly, F., Lendák, I.: Simulation environment for investigating crowd-sensing based urban parking. In: 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 320–327. IEEE (2015)
Rezende de Sousa, P., Lage, M., de Aragão Rocha, A.A.: Future Internet and Scalability Techniques in Mobile Crowdsourcing, WebMedia ‘18, Proceedings of the 24th Brazilian Symposium on Multimedia and the Web, Salvador, BA, Brazil, October 16–19, pp. 77–84 (2018). https://doi.org/10.1145/3243082.3243085
Poncha, L.J., Sherin, A., et al.: 5G in a convergent internet of things Era: an overview. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 20–24 May 2018, Kansas City, MO, USA. https://doi.org/10.1109/iccw.2018.8403748
Al-Fuqaha, A., Guizani, M., et al.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4). Fourth Quarter 2015, pp. 2347ff
Hui, J.: (Ed.) Compression format for IPv6 datagrams over IEEE 802.15.4-based networks. RFC 6282, September 2011. ISSN: 2070-1721
Huang, Z.C., Yuan, F.: Implementation of 6LoWPAN and Its application in smart lighting. J. Comput. Commun. 3, 80–85 (2015)
Koodli, R., Thubert, P. (Ed.) Fast Handover for Mobile IPv6, RFC 4068, IETF (2005)
Pack, S., Shen, X., et al.: Mobility management in mobile hotspots with heterogeneous multihop wireless links. IEEE Commun. Mag. 45(9), 106–112 (2007)
Kong, K.S., Lee, W., et al.: Mobility management for all-IP mobile networks: mobile IPv6 vs. proxy mobile IPv6. IEEE Wirel. Commun. 15(2) (2008). https://doi.org/10.1109/mwc.2008.4492976
Pack, S., Kwon, T., Paik, E.: An adaptive network mobility support protocol in hierarchical mobile IPv6 networks. IEEE Trans. Veh. Technol. 58(7), 3627–3639 (2009)
Lee, J.H., Han, Y.H., et al.: A comparative performance analysis on hierarchical mobile IPv6 and proxy mobile IPv6. Telecommun. Syst. 41(4), 279–292 (2009)
Gohar, M., Koh, S. J., et al.: Seamless multicast handover in PMIPv6-based wireless networks. In: 2010 the 12th International Conference on Date of Conference IEEE Advanced Communication Technology (ICACT), pp. 7–10 (2010)
Jung, H., Gohar, M., et al.: Distributed mobility control in proxy mobile IPv6 networks. IEICE Trans. Comm. F94-B, 2216–2224 (2011)
Guan, J., Zhou, H., et al.: Implementation and analysis of proxy MIPv6. Wirel. Commun. Mobile Comput. 11(4), 477–490 (2011)
Bernardos, C.J., De la Oliva, A., Giust, F.: A PMIPv6-based Solution for Distributed Mobility Management, IMDEA Networks and UC3M, Internet Draft. DMM Working Group, IETF (2013)
Choi, J.I., Seo, W.K., Cho, Y.Z.: Efficient network mobility support scheme for proxy mobile IPv6. EURASIP J. Wirel. Commun. Netw 2015, 210 (2015). https://doi.org/10.1186/s13638-015-0437-8
Gohar, M., Choi, J.G., et al.: Distributed mobility management in 6LoWPAN-based wireless sensor networks. Int. J. Distrib. Sensor Netw. Special issue on Enabling Technologies for Next-Generation Sensor Networks, vol. 2015, 1/2015, Taylor & Francis, Inc. Bristol, PA, USA, https://doi.org/10.1155/2015/620240
Bernardos, C.J., (Ed.) Proxy Mobile IPv6 Extensions to Support Flow Mobility, RFC 7864, May 2016, IETF. https://doi.org/10.17487/rfc7864
Park J.J., Pan, Y., et al: A PMIPv6-based auxiliary mobility management considering traffic locality. In: Advances in Computer Science and Ubiquitous Computing, Springer Singapore, vol. 421, Lecture Notes in Electrical Engineering, pp. 1053ff, 23 11/2016. Print ISBN: 978-981-10-3022-2. https://doi.org/10.1007/978-981-10-3023-9_163,
Wang, Y.: PMIPv6-based partially distributed mobility management modeling and evaluation. World Automat. Congr. (WAC), 31 July 4 Aug. 2016. https://doi.org/10.1109/wac.2016.7583051
Bi, Y., Zhou, H.: An efficient PMIPv6-based handoff scheme for urban vehicular networks. IEEE Trans. Intell. Transp. Syst. 17(12), 3613–3628 (2016)
Guan, J., You, I., at al.: The PMIPv6-based group binding update for IoT devices. Mobile Informat. Syst. 2016. Article ID 7853219 (2016). https://doi.org/10.1155/2016/7853219
Lee, J.H., Ernst, T., Chilamkurti, N.: Performance analysis of PMIPv6-based network mobility for intelligent transportation systems. IEEE Trans. Veh. Technol. 61(1), 74–85 (2012)
Rao, K.R., Bojkovic, Z.S., Bakmaz, B.M.: Wireless Multimedia Communication Systems: Design, Analysis, and Implementation, CRC Press, New York (2014). ISBN-10: 1466566000. ISBN-13: 978-1466566002
Lee, J.H., Singh, K.D., et al.: Wireless and mobile technologies for the Internet of Things. Mobile Informat. Syst. 2016 (2016), Article ID 8206548. https://doi.org/10.1155/2016/8206548
Jara, A.J., Genoud, D., Bocchi, Y.: Intelligent technologies and applications for big data analytics. Big Data for Smart Cities with KNIME a real experience in the SmartSantander Testbed, in Software: Practice and Experience 45(8), 1145–1160 (2015)
Mouton, M., Castignani, G., et al.: Enabling vehicular mobility in city-wide IEEE 802.11 networks through predictive handovers. Vehicul. Commun. Elsevier B.V. 2(2), 4/2015, pp. 59–69
Moreno-Cano, V., Terroso-Saenz, F., Skarmeta-Gomez, A.F.: Big data for IoT services in smart cities. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, Dec. 14–16, Proceedings, pp. 418–423 (2015)
Imran, M., Sohail, J.: Enabling technologies for social internet of things. Elsevier Future Generat. Comput. Syst. 92, 715–717 (2019). https://doi.org/10.1016/j.future.2018.11.018
Rho, S., Chen, Y.: Social internet of things: applications, architectures and protocols. Elsevier Future Generat. Comput. Syst. 92, 959–960 (2019). https://doi.org/10.1016/j.future.2018.01.035
Afzal, B., Umair, M., et al: Enabling IoT platforms for social IoT applications: vision, feature mapping, and challenges. Future Generat. Comput. Syst. 92, 718–731 (2019). https://doi.org/10.1016/j.future.2017.12.002
Al-Turjman, F.: 5G-enabled devices and smart-spaces in social-IoT: an overview. Elsevier, Future Generat. Comput. Syst. 92, 732–744 (2019). https://doi.org/10.1016/j.future.2017.11.035
Minoli, D., Occhiogrosso, B.: Blockchain mechanisms for IoT security. Elsevier IoT J. 1(1), Summer 2018
International Workshop on Secure Internet of Things 2019 (SIoT 2019), held in conjunction with the European Symposium on Research in Computer Security (ESORICS 2019), Luxembourg, 26th September 2019
Minoli, D., Occhiogrosso, B.: IoT Security (IoTSec) mechanisms for e-Health and ambient assisted living applications—a big data role. In: The Second IEEE/ACM International Workshop on Safe, Energy-Aware, & Reliable Connected Health (SEARCH 2017) (collocated with CHASE 2017, Conference on Connected Health: Applications, Systems, and Engineering Technologies), July 17–19, 2017, Philadelphia, PA (2017)
Acknowledgements
The authors wish to thank Wen Hseih, Kazem Sohraby and Chonggang Wang for inputs provided.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Minoli, D., Wang, W., Occhiogrosso, B. (2020). MIPv6 in Crowdsensing Applications for SIoT Environments. In: Hassanien, A., Bhatnagar, R., Khalifa, N., Taha, M. (eds) Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications. Studies in Computational Intelligence, vol 846. Springer, Cham. https://doi.org/10.1007/978-3-030-24513-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-24513-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24512-2
Online ISBN: 978-3-030-24513-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)