Skip to main content

The Acquisition Function

  • Chapter
  • First Online:
Bayesian Optimization and Data Science

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

Abstract

The acquisition function is the mechanism to implement the trade-off between exploration and exploitation in BO. More precisely, any acquisition function aims to guide the search of the optimum towards points with potential low values of objective function either because the prediction of \(f\left( x \right)\), based on the probabilistic surrogate model, is low or the uncertainty, also based on the same model, is high (or both).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astudillo, R., Frazier, P.: Bayesian optimization of composite functions. In: International Conference on Machine Learning, pp. 354–363 (2019, May)

    Google Scholar 

  • Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3(3), 397–422 (2002)

    MathSciNet  MATH  Google Scholar 

  • Basu, K., Ghosh, S.: Analysis of Thompson sampling for Gaussian process optimization in the bandit setting (2017). arXiv preprint arXiv:1705.06808

  • Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Science & Business Media (2013)

    Google Scholar 

  • Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning (2010). arXiv preprint arXiv:1012.2599

  • Frazier, P., Powell, W., Dayanik, S.: The knowledge-gradient policy for correlated normal beliefs. Informs J. Comput. 21(4), 599–613 (2009)

    Article  MathSciNet  Google Scholar 

  • Glasserman, P.: Performance continuity and differentiability in Monte Carlo optimization. In: 1988 Winter Simulation Conference Proceedings, pp. 518–524. IEEE (1988)

    Google Scholar 

  • González, J., Osborne, M., Lawrence, N.D.: GLASSES: Relieving the Myopia of Bayesian Optimisation (2016)

    Google Scholar 

  • Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimization. J. Mach. Learn. Res. 13, 1809–1837 (2012)

    Google Scholar 

  • Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for efficient global optimization of black-box functions. Adv. Neural. Inf. Process. Syst. 25, 144–149 (2014). https://doi.org/10.1016/j.molstruc.2009.06.011

    Article  Google Scholar 

  • Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Google Scholar 

  • Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). arXiv preprint arXiv:1312.6114

  • Krause, A., Golovin, D.:. Submodular function maximization. In: Tractability: practical Approaches to Hard Problems, pp. 71–104. Cambridge University Press (2014)

    Google Scholar 

  • Kushner, H.J.: A new method of locating the maximum point of an arbitrary multi-peak curve in the presence of noise. J. Basic Eng. 86, 97–106 (1964)

    Article  Google Scholar 

  • Lam, R., Willcox, K., Wolpert, D.H.: Bayesian optimization with a finite budget: an approximate dynamic programming approach. Adv. Neural. Inf. Process. Syst. 30, 883–891 (2016). https://doi.org/10.1186/1471-2407-4-76

    Article  Google Scholar 

  • Marchant, R., Ramos, F., Sanner, S.: Sequential Bayesian optimisation for spatial-temporal monitoring. In: International Conference on Uncertainty in Artificial Intelligence, pp. 553–562 (2014)

    Google Scholar 

  • Mockus, J., Tiesis, V., and Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Dixon, L., Szego, G. (eds.) Towards Global Optimisation, 2, pp. 117–130. Elsevier (1978)

    Google Scholar 

  • Nguyen, V., Osborne, M.A.: Knowing the what but not the where in Bayesian optimization (2019). arXiv preprint arXiv:1905.02685

  • Noè, U., Husmeier, D.: On a new improvement-based acquisition function for Bayesian optimization (2018). arXiv preprint arXiv:1808.06918

  • Osborne, M.A., Garnett, R., Roberts, S.J.: Gaussian processes for global optimization. In: 3rd International Conference on Learning and Intelligent Optimization (LION3), vol. 2009 (2009)

    Google Scholar 

  • Poloczek, M., Wang, J., Frazier, P.: Multi-information source optimization.In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, 30, pp. 4291–4301. Curran Associates, Red Hook, NY (2017)

    Google Scholar 

  • Russo, D., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z.: A tutorial on Thompson sam-pling. Found. Trends Mach. Learn. 11, 1–96 (2018). https://doi.org/10.1561/2200000070

    Article  MATH  Google Scholar 

  • Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. In: IEEE Transactions on Information Theory, pp. 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  • Toscano-Palmerin, S., Frazier, P.I.: Bayesian optimization with expensive integrands (2018). arXiv preprint arXiv:1803.08661

  • Villemonteix, J., Vazquez, E., Walter, E.: An informational approach to the global optimization of expensive-to-evaluate functions. J. Global Optim. 44(4), 509 (2009)

    Article  MathSciNet  Google Scholar 

  • Volpp, M., Fröhlich, L., Doerr, A., Hutter, F., Daniel, C.: Meta-learning acquisition functions for Bayesian optimization (2019). arXiv preprint arXiv:1904.02642

  • Wang, Z., Jegelka, S.: Max-value entropy search for efficient Bayesian optimization. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia (2017)

    Google Scholar 

  • Wilson, J., Hutter, F., Deisenroth, M.: Maximizing acquisition functions for Bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 9906–9917 (2018)

    Google Scholar 

  • Wu, J., Frazier, P.: The parallel knowledge gradient method for batch bayesian optimization. In: Advances in Neural Information Processing Systems, pp. 3126–3134 (2016)

    Google Scholar 

  • Wu, J., Frazier, P.I.: Discretization-free knowledge gradient methods for bayesian optimization (2017). arXiv preprint arXiv:1707.06541

  • Wu, J., Poloczek, M., Wilson, A.G., Frazier, P.: Bayesian optimization with gradients. In: Advances in Neural Information Processing Systems, pp. 5273–5284, (4.2.5) (2017)

    Google Scholar 

  • Yan, L., Duan, X., Liu, B., Xu, J.: Bayesian optimization based on K-optimality. Entropy 20(8), 594 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Archetti .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Archetti, F., Candelieri, A. (2019). The Acquisition Function. In: Bayesian Optimization and Data Science . SpringerBriefs in Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-24494-1_4

Download citation

Publish with us

Policies and ethics