Skip to main content

Other Interesting Alloys for Aerospace and Related Applications

  • Chapter
  • First Online:
Book cover Aerospace Alloys

Abstract

Four groups of materials, which are being considered in view of their potential applications in the aerospace field, are presented. Refractory metal, oxide dispersion strengthened and intermetallic alloys are good candidates for replacing nickel-based superalloys, mainly to increase the gas turbine operating temperatures. The main critical issues for each class of materials and relevant remediation strategies are discussed. Shape memory alloys are the fourth class of materials considered herewith: they are fundamental for the development of structures, exploiting the functional properties of these alloys, and that would otherwise require complex design and more numerous components. This design simplification has several interesting aspects, including increased reliability and weight reduction, as several satellite and spacecraft applications of shape memory alloys have proved already in a number of practical solutions for strategic devices in aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinc M et al (1999) Boron-doped Molybdenum Silicides for Structural Applications. Materials Science and Engineering A 261 (1–2): 16–23

    Article  Google Scholar 

  • Alven D A (2004) Refractory and Precious Metal-Based Superalloys. JOM 56 (9): 27

    Article  Google Scholar 

  • Aoki K, Izumi O (1979) Improvement in Room Temperature Ductility of the L12 Type Intermetallic Compound Ni3Al by Boron addition. Journal of the Japan Institute of Metals 43 (12): 119–1196

    Article  Google Scholar 

  • Auricchio F et al (2003) Modelling of SMA Materials: Training and Two Way Memory Effects. Computers and Structures 81: 2301–2317

    Article  Google Scholar 

  • Azim M A et al (2017) Characterization of Oxidation Kinetics of Mo-Si-B Based Materials. Oxidation of Metals 87 (1–2): 89–108

    Article  CAS  Google Scholar 

  • Baker I et al (1998) The Room Temperature Strengthening Effect of Boron as a Function of Aluminum Concentration in FeAl. Intermetallics 6 (3): 177–183

    Article  CAS  Google Scholar 

  • Barbarino S et al (2011) A Review of Morphing Aircraft. Journal of Intelligent Material Systems and Structures 22: 823–877

    Article  Google Scholar 

  • Bei H, George E P (2005) Microstructure and Mechanical Properties of a Directionally Solidified NiAl-Mo Eutectic Alloy. Acta Materialia 53 (1): 69–77

    Article  CAS  Google Scholar 

  • Benjamin J S (1990) Mechanical Alloying – A Perspective. Metal Powder Report 45 (2): 122–127

    Article  Google Scholar 

  • Benjamin J S, Bomford MJ (1977) Dispersion Strengthened Aluminum Made by Mechanical Alloying. Metallurgical Transactions A 8 (8): 1301–1305

    Article  Google Scholar 

  • Bewlay B P et al (1995) Solidification Processing of High Temperature Intermetallic Eutectic-Based Alloys. Materials Science and Engineering A 192: 534–543

    Article  Google Scholar 

  • Bewlay B P et al (2003a) A Review of Very-High-Temperature Nb-Silicide-Based Composites. Metallurgical and Materials Transactions A 34 (10): 2043–2052

    Article  Google Scholar 

  • Bewlay B P et al (2003b) Ultrahigh-Temperature Nb-Silicide-Based Composites. MRS Bulletin 28 (09): 646–653

    Article  Google Scholar 

  • Bochenek K, Batista M (2015) Advances in Processing of NiAl Intermetallic Alloys and Composites for High Temperature Aerospace Applications. Progress in Aerospace Sciences 79: 136–146.

    Article  Google Scholar 

  • Bokaie M D et al (1998) Release Device for Retaining Pins. US Patent 5,771,742

    Google Scholar 

  • Briant C L (2000) New Applications for Refractory Metals. JOM 51 (3): 36

    Article  Google Scholar 

  • Brosse J B et al (1981) Intrinsic Intergranular Brittleness of Molybdenum. Scripta Metallurgica 15 (6): 619–623

    Article  CAS  Google Scholar 

  • Brueckner J, Girvin R (2008) Airport Noise Regulation, Airline Service Quality, an Social Welfare. Transport Research Part B: Methodological 42 (1): 19–37

    Article  Google Scholar 

  • Buckley J D et al (1981) Early Development of Ceramic Fiber Insulation for Space Shuttle. Ceramic Bulletin 60: 1196–1200

    CAS  Google Scholar 

  • Buckman R W (2000) New Applications for Tantalum and Tantalum Alloys. JOM 52 (3): 40–41

    Article  CAS  Google Scholar 

  • Buehler W J et al (1963) Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics 34 (5): 1475–1477

    Article  CAS  Google Scholar 

  • Burk S et al (2010) Effect of Zr Addition on the High-Temperature Oxidation Behaviour of Mo-Si-B Alloys. Oxidation of Metals 73 (1): 163–181

    Article  CAS  Google Scholar 

  • Byun T S et al (2013) Irradiation Dose Temperature Dependence of Fracture Toughness in High Dose HT9 Steel from the Fuel Duct of FFTF. Journal of Nuclear Materials 432 (1–3): 1–8

    Article  CAS  Google Scholar 

  • Caldwell N et al (2007) Heat Transfer Model for Blade Twist Actuator System. Journal of Thermophysics and Heat Transfer 21 (2): 350–360

    Article  CAS  Google Scholar 

  • Calkins F T et al (2006) Variable Geometry Chevrons for Jet Noise Reduction. Paper presented at the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, Massachusetts, 8–10 May 2006

    Google Scholar 

  • Calkins F T et al (2008) Overview of Boeing’s Shape Memory Alloy Based Morphing Aerostructures. Paper presented at the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott City, Maryland, USA, 28–30 October

    Google Scholar 

  • Calkins F T, Habe J H (2010) Shape Memory Alloy Based Morphing Aerostructures. Journal of Mechanical Design 132 (11): 111012

    Article  Google Scholar 

  • Cantor B et al (2001) Aerospace Materials. CRC Press

    Google Scholar 

  • Cao H et al (1994) Mechanical Properties of an In Situ Synthesized Nb/Nb3Al Layered Composite. Materials Science and Engineering A 185 (1–2): 87–95

    Article  Google Scholar 

  • Cao H et al (2013) Preparation of Dispersion Strengthened Aluminum Alloy by High Energy Ball Milling. Advanced Materials Research 602–604: 598–601

    Google Scholar 

  • Carpenter B, Lyons J (2002) Lightweight Flexible Solar Array Validation Report. Available via DIALOG. https://eo1.gsfc.nasa.gov/new/validationReport/Technology/Documents/Reports/LFSA.pdf. Accessed 17 Sept 2018

  • Casati R et al (2014) Thermal Cycling of Stress-Induced Martensite for High-Performance Shape Memory Effect. Scripta Materialia 80 (13–16)

    Article  CAS  Google Scholar 

  • Chen J, Hoffelner W (2009) Irradiation Creep of Oxide Dispersion Strengthened (ODS) Steels for Advanced Nuclear Applications. Journal of Nuclear Materials 392 (2): 360–363

    Article  CAS  Google Scholar 

  • Chen Y (2013) Irradiation Effects of HT-9 Martensitic Steel. Nuclear Engineering and Technology 45 (3): 311–322

    Article  CAS  Google Scholar 

  • Chen Y X et al (2000) Microstructure and Phase Stability Studies on Heusler Phase Ni2AlHf and G-Phase Ni16Hf6Si7 in Directionally Solidified NiAl-Cr(Mo) Eutectic Alloyed with Hf. Journal of Materials Research 15 (6): 1261–1270

    Article  CAS  Google Scholar 

  • Cockeram B V (2006) The Mechanical Properties and Fracture Mechanisms of Wrought Low Carbon Arc Cast (LCAC), Molybdenum-0.5pct Titanium-0.1pct Zirconium (TZM), and Oxide Dispersion Strengthened (ODS) Molybdenum Flat Products. Materials Science and Engineering A 418 (1–2): 120–136

    Article  CAS  Google Scholar 

  • Cockeram B V (2009) The Fracture Toughness and Toughening Mechanism of Commercially Available Unalloyed Molybdenum and Oxide Dispersion Strengthened Molybdenum with an Equiaxed, Large Grain Structure. Metallurgical and Materials Transactions A 40: 2843–2860

    Article  CAS  Google Scholar 

  • Cornish L A et al (2006) New Pt-based Alloys for High Temperature Application in Aggressive Environments: The Next Stage. International Platinum Conference “Platinum Surges Ahead”, The South African Institute of Mining and Metallurgy: 57–66

    Google Scholar 

  • Cui C Y et al (2005) High Tensile Elongation of a Directionally Solidified NiAl Multiphase Alloy at High Temperatures. Materials Science and Engineering A 396 (1–2): 194–201

    Article  CAS  Google Scholar 

  • Darolia R (1991) NiAl Alloys for High-Temperature Structural Applications. JOM 43 (3): 44–49

    Article  CAS  Google Scholar 

  • Dimiduk D M, Perepezko J H (2003) Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material. MRS Bulletin 28 (9): 639–645

    Article  CAS  Google Scholar 

  • Donachie M J, Donachie S J (2002) Superalloys – A Technical Guide. ASM International

    Google Scholar 

  • Duerig T W et al (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann

    Google Scholar 

  • El-Genk M S (2009) Deployment History and Design Considerations for Space Reactor Power Systems. Acta Astronautica 64 (9–10): 833.849

    Google Scholar 

  • El-Genk M S, Tournier J M (2005) A Review of Refractory Metal Alloys and Mechanically Alloyed-Oxide Dispersion Strengthened Steels for Space Nuclear Power Systems. Journal of Nuclear Materials 340 (1): 93–112

    Article  CAS  Google Scholar 

  • Elzey D M, Artz E (1988) Oxide Dispersion Strengthened Superalloys: The Role of Grain Structure and Dispersion during High Temperature Low Cycle Fatigue. In: Reichman S et al (ed) Superalloys, The Metallurgical Society, p 595–604

    Google Scholar 

  • Fairbank G B et al (2000) Ultra-High Temperature Intermetallics for The Third Millennium. Intermetallics 8 (9–11): 1091–1100

    Article  CAS  Google Scholar 

  • Fischer B et al (1999) High Temperature Mechanical Properties of the Platinum Group Metals. Platinum Metals Review 43 (l): 18–28

    CAS  Google Scholar 

  • Froes F H (1990) The Structural Applications of Mechanical Alloying. In: Froes F H, deBarbdillo J J (eds) Proceedings of an ASM International Conference, Myrtle Beach, South Carolina, 27–29 March 1990. ASM International, Materials Park, Ohio

    Google Scholar 

  • Gao M C et al (2008) The First-Principles Design of Ductile Refractory Alloys. JOM 60 (7): 61–65

    Article  CAS  Google Scholar 

  • Gilman P S, Nix W D (1981) The Structure and Properties of Aluminum Alloys Produced by Mechanical Alloying: Powder Processing and Resultant Powder Structures. Metallurgical and Materials Transactions A 12 (5): 813–824

    Article  CAS  Google Scholar 

  • Gu Y F et al (2004) Chromium and Chromium-Based Alloys: Problems and possibilities for High Temperature Service. JOM 56 (9): 28–33

    Article  CAS  Google Scholar 

  • Gu Y F et al (2005) Microstructural Evolution and Mechanical Properties of Cr-Ru Alloys. Metallurgical and Materials Transactions A 36 (3): 577–582

    Article  Google Scholar 

  • H C Starck Fabricated Products (2013) Defense and Aerospace Applications of Molybdenum, Tungsten and Tantalum Products. Available via DIALOG. https://www.azom.com/article.aspx?ArticleID=9073. Accessed 15 Nov 2018

  • Harada H (2003) High Temperature Materials for Gas Turbines. The Present and Future. In: Proceedings of the International Gas Turbine Congress, Tokyo, 2–7 November 2003

    Google Scholar 

  • Harper M A, Rapp R A (1994) Codeposited Chromium and Silicon Diffusion Coatings for Fe-Base Alloys via Pack Cementation. Oxidation of Metals 42 (3–4): 303–333

    Article  CAS  Google Scholar 

  • Hart D J et al (2010) Jet Engine Chevron Application: II Experimentally Validated Numerical Analysis. Smart Materials and Structures 19 (1): 015021

    Article  CAS  Google Scholar 

  • Hart D J et al (2010) Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: I Thermomechanical Characterization. Smart Materials and Structures 19 (1): 015020

    Article  CAS  Google Scholar 

  • Hartl D J, Lagoudas D C (2007) Aerospace Applications of Shape Memory Alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221, p 535–552

    Article  CAS  Google Scholar 

  • Heilmeier M et al (2009) Metallic Materials for Structural Applications Beyond Nickel-based Superalloys. JOM 61 (7): 61–67

    Article  CAS  Google Scholar 

  • Hoffelner W (2011) Design Related Aspects in Advanced Nuclear Fission Plants. Journal of Nuclear Materials 409 (2): 112–116

    Article  CAS  Google Scholar 

  • Howson T E et al (1980) Creep and Stress Rupture of Oxide Dispersion Strengthened Mechanically Alloyed Inconel Alloy MA754. Metallurgical Transactions A 11 (9): 1599–10607

    Article  Google Scholar 

  • Icardi U, Ferrero L (2009) Preliminary Study of an Adaptive Wing with Shape Memory Alloy Torsion Actuators. Materials & Design 30 (10): 4200–4210

    Article  CAS  Google Scholar 

  • Jacot A D et al (2002) Shape Memory Alloy Device and Control Method. US Patent 6,499,952 B1

    Google Scholar 

  • Jardine A P et al (1997) Smart Wing Shape Memory Alloy Actuator Design and Performance. In: Goldstein D H, Chipman R A (eds) Proceedings of SPIE – The International Society for Optical Engineering. Polarization: Measurement, Analysis, and Remote Sensing, San Diego, CA, United States, 30 July – 1 August 1997

    Google Scholar 

  • Jehanno P et al (2005) Assessment of a Powder Metallurgical Processing Route for Refractory Metal Silicide Alloys. Metallurgical and Materials Transactions A 36 (3): 515–523

    Article  Google Scholar 

  • Jenkins P P, Landis G A (1995) A Rotating Arm using Shape Memory Alloy. In NASA (ed) The 29th Aerospace Mechanisms Symposium, p 167–171

    Google Scholar 

  • Jha SC et al (1989) Dispersoid in Rapidly Solidified B2 Nickel Aluminides. Scripta Metallurgica 23: 805–810

    Article  CAS  Google Scholar 

  • Jiao Z B et al (2016) Strategies for Improving Ductility of Ordered Intermetallics. Progress in Natural Science: Materials International 26 (1): 1–12

    Article  CAS  Google Scholar 

  • Johnson A D (1992) Non-Explosive Separation Device. US Patent 5,119,555

    Google Scholar 

  • Jones E S et al (1958) The Oxidation of Molybdenum. Corrosion 14 (1): 20–26

    Article  Google Scholar 

  • Kaplanskii Y Y (2018) Microstructure and Thermomechanical Behavior of Heusler Phase Ni2AlHf-strengthened NiAl-Cr(Co) Alloy produced by HIP of Plasma-spheroidized Powder. Materials Science and Engineering A 729: 398–410

    Article  CAS  Google Scholar 

  • Kaufman G, Mayo I (1997) The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and its Applications. The Chemical Educator 2 (2): 1–21

    Article  Google Scholar 

  • Kennedy D K et al (2000) Development of an SMA Actuator for In-Flight Rotor Blade Tracking. Journal of Intelligent Material Systems and Structures 15 (4): 235–248

    Article  Google Scholar 

  • King D et al (2009) Advanced Aerospace Materials: Past, Present and Future. Aviation and the Environment 3: 22–27

    Google Scholar 

  • Klueh R L (1993) Tensile Behavior of Neutron-Irradiated Martensitic Steels: A Review. Nuclear Technology 102 (3): 376–385

    Article  CAS  Google Scholar 

  • Klueh RL, Nelson A T (2007) Ferritic/martensitic steels for next generation reactors. Journal of Nuclear Materials 371:37–52

    Article  CAS  Google Scholar 

  • Knittel S et al (2013) Development of Silicide Coatings to Ensure the Protection of Nb and Silicide Composites against High Temperature Oxidation. Surface and Coatings Technology 235: 401–406

    Article  CAS  Google Scholar 

  • Koch C C, Whittenberger J D (1996) Mechanical Milling/alloying of intermetallics. Intermetallics 4 (5): 339–355

    Article  CAS  Google Scholar 

  • Korb L J et al (1981) The Shuttle Orbiter Thermal Protection System. Ceramic Bulletin 60: 1188–1193

    Google Scholar 

  • Kudva J (2004) Overview of the DARPA Smart Wing Project. Journal of Intelligent Material Systems and Structures 15: 261–267

    Article  Google Scholar 

  • Kung S C, Rapp R A (1989) Analyses of the Gaseous Species in Halide-Activated Cementation Coating Packs. Oxidation of Metals 32 (1–2): 89–109

    Article  CAS  Google Scholar 

  • Lasalmonie A (2006) Intermetallics: Why is it so Difficult to Introduce Them in Gas Turbine Engines? Intermetallics 14 (10–11): 1123–1129

    Article  CAS  Google Scholar 

  • Lassner E, Schubert W D (1999) Tungsten – Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  • Lewis P (1997) Aircraft Industry Accepts Shape Memory Alloy Technology. Aircraft Engineering and Aerospace Technology 69 (1): 31–34

    Article  Google Scholar 

  • Liebscher C H, Glatzel U (2014) Configuration of Superdislocations in the γ’-Pt3Al Phase of a Pt-based Superalloy. Intermetallics 48: 71–78

    Article  CAS  Google Scholar 

  • Lipetzky P (2002) Refractory Metals: A Primer. JOM 54 (3): 47–49

    Article  CAS  Google Scholar 

  • Liu C T et al (1985) Effect of Boron on Grain-Boundaries in Ni3Al. Acta Metallurgica 33 (2): 213–229

    Article  CAS  Google Scholar 

  • Liu C T, Kumar K S (1993) Ordered Intermetallic Alloys, Part I: Nickel and Iron Aluminides. JOM 45 (3): 38–44

    Article  CAS  Google Scholar 

  • Liu G et al (2013) Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility. Nature Materials 12 (4): 344–350

    Article  CAS  Google Scholar 

  • Locci I E et al (1996) Microstructure and Phase Stability of Single Crystal NiAl alloyed with Hf and Zr. Journal of Materials Research 11 (12): 3024–3038

    Article  CAS  Google Scholar 

  • Loewy R G (1997) Recent Developments in Smart Structures with Aeronautical Applications. Smart Materials and Structures 6 (5): R11–R42

    Article  Google Scholar 

  • Lu Z L et al (2013) Fabricating Hollow Turbine Blades using Short Carbon Fiber-reinforced SiC Composite. International Journal of Advanced Manufacturing Technology 69 (1–4): 417–425

    Article  Google Scholar 

  • Mabe J H et al (2005) Design and Control of a Morphing Chevron for Takeoff and Cruise Noise Reduction. In: Proceedings of the 26th Annual AIAA Aeroacoustics Conference, Monterey, CA, 23–25 May 2005

    Google Scholar 

  • Mabe J H et al (2006) Boeing’s Variable Geometry Chevron, Morphing Aerostructure for Jet Noise Reduction. Paper presented at the 47th AIAA/ASME/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 1–4 May 2006

    Google Scholar 

  • Mabe J H et al (2007) Full-Scale Flight Tests of Aircraft Morphing Structures using SMA Actuators. In: Proceedings Volume 6525, Active and Passive Smart Structures and Integrated Systems 2007. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, United States, 2007

    Google Scholar 

  • Mabe J H et al (2008) Variable Area Jet Nozzle Using Shape Memory Alloy Actuators in an Antagonistic Design. In: Proceedings Volume 6930, Industrial and Commercial Applications of Smart Structures Technologies 2008. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, United States, 2008

    Google Scholar 

  • Majumdar S et al (2009) Densification and Grain Growth during Isothermal Sintering of Mo and Mechanically Alloyed Mo-TZM. Acta Materialia 57 (14): 415–4168

    Article  CAS  Google Scholar 

  • Mansur L F et al (2004) Materials Needs for Fusion, Generation-IV Fission Reactors and Spallation Neutron Sources – Similarities and Differences. Journal of Nuclear Materials 329–333 Part A: 166–172

    Google Scholar 

  • Mason D P, Van Atkin D C (1993) The Effect of Microstructural Scale on Hardness of MoSi2-Mo5Si3 Eutectics. Scripta Metallurgica et Materialia 28 (2): 185–189

    Article  CAS  Google Scholar 

  • McKamey C G et al (1991) A Review of Recent Developments in Fe3Al-based Alloys. Journal of Materials Research 6 (8): 1779–1805

    Article  CAS  Google Scholar 

  • McLean M (1983) Directionally Solidified Materials for High Temperature Service. The Metal Society, London, UK

    Google Scholar 

  • Medvedeva N I et al (2007) Solid Solution Softening and Hardening in the Group-V and Group-IV bcc Transition Metals Alloys: First Principles Calculations and Atomistic Modeling. Physical Review B 76 (21): 212104

    Article  CAS  Google Scholar 

  • Melton K N (1999) General Applications of Shape Memory Alloys and Smart Materials. In: Otsuka K, Wayman C M (eds) Shape Memory Materials. Cambridge University Press, p 220–239

    Google Scholar 

  • Mendiratta M G, Dimiduk D M (1993) Strength and Toughness of a Nb/Nb5Si3 Composite. Metallurgical and Materials Transactions A 24 (2): 501–504

    Article  Google Scholar 

  • Miller M K et al (2003) Improvement in the Ductility of Molybdenum Alloys due to Grain Boundary Segregation. Scripta Metallurgica 46 (4): 299–303

    Article  Google Scholar 

  • Miller M K et al (2005) Stability of Ferritic MA/ODS Alloys at High Temperatures. Intermetallics 13 (3–4): 387–392

    Article  CAS  Google Scholar 

  • Miller M K et al (2006) Characterization of Precipitates in MA/ODS Ferritic Alloys. Journal of Nuclear Materials 351 (1–3): 261–268

    Article  CAS  Google Scholar 

  • Miracle D B (1993) The Physical and Mechanical Properties of NiAl. Acta Metallurgica et Materialia 41 (39): 649–684

    Article  CAS  Google Scholar 

  • Mitra R (2006) Mechanical Behaviour and Oxidation Resistance of Structural Silicides. International Materials Reviews 51 (1): 13–64

    Article  CAS  Google Scholar 

  • Mitra R (2018) Intermetallic Matrix Composites. Woodhead Publishing, Duxford, UK

    Google Scholar 

  • Morris D, Gunther S (1997) Room and High Temperature Mechanical Behavior of a Fe3Al-based Alloy with α-α” Microstructure. Acta Materialia 45 (2): 811–822

    Article  CAS  Google Scholar 

  • Mueller A J et al (2000) Evaluation of Oxide Dispersion Strengthened (ODS) Molybdenum and Molybdenum-Rhenium Alloys. International Journal of Refractory Metals and Hard Materials 18 (4–5): 205–211

    Article  CAS  Google Scholar 

  • Muktinutalapati N R (2011) Materials for Gas Turbines – An Overview. In: Benini E (ed) Advances in Gas Turbine Technology, IntecOpen, p 293–314

    Google Scholar 

  • Mutry K L, Charit I (2008) Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities. Journal of Nuclear Materials 383 (1–2): 189–195

    Google Scholar 

  • Noebe R D et al (2009) High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and associated Processing Methods.

    Google Scholar 

  • Ölander A (1932) An Electrochemical Investigation of Solid Cadmium-Gold Alloys. Journal of the American Chemical Society 54 (10): 3819–3833

    Article  Google Scholar 

  • Parthasarathy T A et al (2002) Oxidation Mechanisms in Mo-reinforced Mo5SiB2(T2)– Mo3Si Alloys. Acta Materialia 50 (7): 1857–1868

    Article  CAS  Google Scholar 

  • Patra A et al (2015) Tungsten Based ODS Alloys-A Comprehensive Survey. Lap Lambert Academic Publishing

    Google Scholar 

  • Perepezko J H (2009) The Hotter the Engine, the Better. Science 356 (5956): 1068–1069

    Article  Google Scholar 

  • Perepezko J H et al (2014) Structural Intermetallics, Alloy Design, Processing, and Applications. Advanced Materials and Processes 172 (9): 22–26

    Google Scholar 

  • Petrovic J J, Vasudevan A K (1999) Key Development in High Temperature Structural Silicides. Materials Science and Engineering A 261: 1–5

    Article  Google Scholar 

  • Pettifor D G (1988a) Structure Maps for Pseudobinary and Ternary Phases. Materials Science and Technology 4 (8): 675–691

    Article  CAS  Google Scholar 

  • Pettifor D G (1988b) Theoretical Predictions of Structure and Related Properties of Intermetallics. Materials Science and Technology 8 (4): 345–349

    Article  Google Scholar 

  • Pickens J R (1991) High-Strength Aluminum P/M Alloys. In: ASM International (ed) ASM Handbook Volume 2 – Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International

    Google Scholar 

  • Pitt D M et al (2001) SAMPSON Smart Inlet SMA Powered Adaptive Lip Design and Static Test. In: 19th AIAA Applied Aerodynamics Conference, Fluid Dynamics and Co-located Conferences, Anaheim, CA, USA

    Google Scholar 

  • Pitt D M et al (2002) SAMPSON Smart Inlet Design Overview and Wind Tunnel Test: II. In: Proceedings Volume 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, United States, 2002

    Google Scholar 

  • Pitt D M et al (2002) SAMPSON Smart Inlet Design Overview and Wind Tunnel Test: I. In: Proceedings Volume 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, United States, 2002

    Google Scholar 

  • Polvani R S et al (1976) High Temperature Creep in a Semi-Coherent NiAl-Ni2AITi Alloy. Metallurgical Transactions A 7: 33–40

    Article  Google Scholar 

  • Portebois L et al (2014) Effect of Boron Addition on the Oxidation Resistance of Silicide Protective Coatings: A Focus on Boron Location in as-coated and oxidized coated Niobium Alloys. Surface and Coatings Technology 253: 292–299

    Article  CAS  Google Scholar 

  • Potgieter J H, Maledi N B (2014) High Temperature Corrosion Resistance of Pt-Based Superalloys in 0.2% SO2-N2 Gas. The Open Materials Science Journal 8: 18–26

    Article  CAS  Google Scholar 

  • Prahlad H, Chopra I (2001) Design of a Variable Twist Tilt-rotor Blade Using Shape Memory Alloy (SMA) Actuators. In: Proceedings Volume 4327, Smart Structures and Materials 2001: Smart Structures and Integrated Systems. SPIE’s 8th Annual International Symposium on Smart Structures and Materials. Newport Beach, CA, United States, p 46–59

    Google Scholar 

  • Ray R et al (1989) Carbide-dispersion-strengthened B2 NiAl. Materials Science and Engineering A 119: 103–111

    Article  Google Scholar 

  • Reese R T, Vick C P (1983) Soviet Nuclear Powered Satellites. British Interplanetary Society Journal 36: 457–462

    Google Scholar 

  • Reuss S, Vehoff H (1990) Temperature Dependence of the Fracture Toughness of Single Phase and Two Phase Intermetallics. Scripta Metallurigica et Materialia 24 (6): 1021–1026

    Article  CAS  Google Scholar 

  • Reviere R D et al (1992) Processing Microstructure and Low-Temperature Properties of Directionally Solidified NiAl/NiAlNb Alloys. Materials Letters 14 (2–3) 149–155

    Article  CAS  Google Scholar 

  • Richerson D W (2004) Ceramic Components for Gas Turbine Engines: Why Has It Taken So Long? Ceramics Engineering and Science Proceedings 25 (3): 3–32

    Article  CAS  Google Scholar 

  • Ruggieri R T et al (2008). Development of a 1/4-Scale NiTinol Actuator for Reconfigurable Structures. In: Proceedings Volume 6930, Industrial and Commercial Applications of Smart Structures Technologies 2008. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, United States, 2008

    Google Scholar 

  • Saiyed N et al (2000) Acoustics and Thrust of Separate-Flow Exhaust Nozzles with Mixing Devices for High-Bypass-Ratio Engines. Available via DIALOG. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000083968.pdf. Accessed 24 Feb 2019

  • Sakidja R et al (2005) Synthesis of Oxidation Resistant Silicide Coatings on Mo-Si-B Alloys. Scripta Materialia 53 (6) 723–728

    Article  CAS  Google Scholar 

  • Sankar M et al (2015) Microstructure, Oxidation Resistance and Tensile Properties of Silicide Coated Nb-Alloy C-103. Materials Science and Engineering A 645 (1): 339–346

    Article  CAS  Google Scholar 

  • Saunders S R et al (1997) Behaviour of Fecralloy and Iron Aluminides Alloys in Coal Gasification Atmospheres Containing HCl. Materials Science Forum 251–254: 583–590

    Article  Google Scholar 

  • Scheppe F et al (2002) Nickel Aluminides: A Step Toward Industrial Applications. Materials Science and Engineering A 329–331: 596–601

    Article  Google Scholar 

  • Schmidt F F, Ogden H R (1963) The Engineering Properties of Tantalum and Tantalum Alloys. Available via DIALOG. https://apps.dtic.mil/dtic/tr/fulltext/u2/426344.pdf. Accessed 8 Nov 2018

  • Schoijet M, Girifalco L A (1967) Theory of Diffusion in Ordered Alloys of the β-Brass Type. Solid State Communications 29 (3): 481–495

    Google Scholar 

  • Schoijet M, Girifalco L A (1968) Diffusion in order-disorder Alloys. The Face Centered Cubic AB3 Alloy. Journal of Physics and Chemistry of Solids 29 (6): 911–922

    Article  CAS  Google Scholar 

  • Sikka V K et al (2000) Advances in Processing of Ni3Al-based Intermetallics and Applications. Intermetallics 8 (9–11): 1329–1337

    Article  CAS  Google Scholar 

  • Singh K, Chopra I (2002) Design of an Improved Shape Memory Alloy Actuator for Rotor Blade Tracking. In: Proceedings Volume 4701, Smart Structures and Materials 2002: Smart Structures and Integrated Systems. SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, United States, 2002

    Google Scholar 

  • Sofla A Y N et al (2010) Shape Morphing of Aircraft Wing: Status and Challenges. Materials & Design 31 (4): 1284–1292

    Article  CAS  Google Scholar 

  • Soleimani-Dorcheh A et al (2014) On Ultra-High Temperature Oxidation of Cr-Cr3Si Alloys: Effect of Germanium. Materials and Corrosion 65 (12): 1143–1150

    Article  CAS  Google Scholar 

  • Stoloff N S (2000) Emerging Applications of Intermetallics. Intermetallics 8 (9–11): 1313–1320

    Article  CAS  Google Scholar 

  • Stone H W (1996) Mars Pathfinder Microrover A Small, Low-Cost, Low-Power Spacecraft. In: Proceedings of the 1996 AIAA Forum on Advanced Developments in Space Robotics.

    Google Scholar 

  • Strelec J K et al (2003) Design and Implementation of a Shape Memory Alloy Actuated Reconfigurable Wing. Journal of Intelligent Material Systems and Structures 14 (4–5): 257–273

    Article  Google Scholar 

  • Strutt P R et al (1976) Creep Behavior of the Heusler Type Structure Alloy NiAl2Ti. Metallurgical Transactions A 7: 23–31

    Article  Google Scholar 

  • Sturm D et al (2007) The Influence of Silicon on the Strength and Fracture Toughness of Molybdenum. Materials Science and Engineering A 463 (1–2): 107–114

    Article  CAS  Google Scholar 

  • Testa C et al (2005) Feasibility Study on Rotorcraft Blade Morphing in Hovering. Proceedings of SPIE – The International Society for Optical Engineering 5764: 171–182

    Google Scholar 

  • Trinkle D R, Woodward C (2005) The Chemistry of Deformation: How Solutes Soften Pure Metals. Science 310 (5754): 1665–1667

    Article  CAS  Google Scholar 

  • United Nations General Assembly (1992) Principles Relevant to the Use of Nuclear Power Sources in Outer Space – Resolution 47/68. Available via DIALOG. https://www.un.org/ga/documents/gares47/list47.htm. Accessed 27 Sept 2016

  • Van Humbeeck J (2012) Shape Memory Alloys with High Transformation Temperatures. Materials Research Bulletin 47 (10): 2966–2968

    Article  CAS  Google Scholar 

  • Vilasi M et al (1993) Crystal Structure of Tri-Niobium Tri-Iron Chromium Hexasilicide Nb=3Fe=3Cr=lSi6: an Intergrowth of Zr4Co4Ge7 and Nb2Cr4Si5 Blocks. Journal of Alloys and Compounds 194 (1): 127–132

    Article  CAS  Google Scholar 

  • Vilasi M et al (1998a) New Silicides for New Niobium Protective Coatings. Journal of Alloys and Compounds 264 (1–2): 244–251

    Article  CAS  Google Scholar 

  • Vilasi M et al (1998b) Phase Equilibria in the Nb-Fe-Cr-Si System. Journal of Alloys and Compounds 269 (1–2): 187–192

    Article  Google Scholar 

  • Vorberg S et al (2004) Pt-Al-Cr-Ni Superalloys: Heat Treatment and Microstructure. JOM 56 (9): 40–43

    Article  CAS  Google Scholar 

  • Vorberg S et al (2005) A TEM Investigation of the γ-γ’ Phase Boundary in Pt-based Superalloys. JOM 57 (3): 49–51

    Article  CAS  Google Scholar 

  • Wadsworth J et al (1988) Recent Advances in Aerospace Refractory-Metal Alloys. International Materials Reviews 33 (1): 131–150

    Article  CAS  Google Scholar 

  • Wang C C, Akbar S A (1993) Diffusion in Ordered Alloys and Intermetallic Compounds. Acta Metallurgica et Materialia 41 (10): 2807–2813

    Article  CAS  Google Scholar 

  • Wang L et al (2016) Microstructure and Mechanical Properties of NiAl-based Hypereutectic Alloy obtained by Liquid Metal Cooling and Zone Melted Liquid Metal Cooling Directional Solidification Techniques. Journal of Materials Research 31 (5): 646–654

    Article  CAS  Google Scholar 

  • Wang L et al (2017) Microstructure Evolution and Room Temperature Fracture Toughness of as-cast and Directionally Solidified Novel NiAl-Cr(Fe) Alloy. Intermetallics 84: 11–19

    Article  CAS  Google Scholar 

  • Ward-Close C M et al (1996) Intermetallic-Matrix Composites – A Review. Intermetallics 4 (3): 217–229

    Article  CAS  Google Scholar 

  • Wenderoth M et al (2005) On the Development and Investigation of Quaternary Pt-Based Superalloys with Ni Additions. Metallurgical and Materials Transactions A 36 (3): 567–575

    Article  Google Scholar 

  • Whittenberger J D (1999) 1300 K Creep Behavior of [001] oriented Ni-49Al-1Hf (at%) Single Crystals. Materials Science and Engineering A 286 (1): 165–183

    Article  Google Scholar 

  • Whittenberger J D et al (1990a) 1300 K Compressive Properties of Several Dispersion Strengthened NiAl Materials. Journal of Materials Science 25: 2771–2776

    Article  CAS  Google Scholar 

  • Whittenberger J D et al (1990b) Preliminary Investigation of a NiAl Composite prepared by Cryomilling. Journal of Materials Research 5 (2): 271–277

    Article  Google Scholar 

  • Whittenberger J D et al (1992a) Compressive Strength of Directionally Solidified NiAl-NiAlNb Intermetallics at 1200 and 1300 K. Scripta Metallurgica et Materialia 26 (6): 987–992

    Article  CAS  Google Scholar 

  • Whittenberger J D et al (1992b) Influence of Grain Size on the Creep Behavior of HfC-dispersed NiAl. Materials Science and Engineering A 151: 137–146

    Article  Google Scholar 

  • Whittenberger J D et al (1999) Microstructure and 1000-1400 K Mechanical Properties of Cryomilled NiAl-0.7Zr. Journal of Materials Research 14 (6): 2418–2429

    Article  Google Scholar 

  • Whittenberger J D et al (2000) Elevated Temperature Compressive Strength Properties of Oxide Dispersion Strengthened NiAl after Cryomilling and Roasting in Nitrogen. Materials Science and Engineering A 291 (1–2): 173–185

    Article  Google Scholar 

  • Wiedemann C et al (2005). Size Distribution of NaK Droplets released during RORSAT Reactor Core Ejection. Advances in Space Research 35 (7): 1290–1295

    Article  CAS  Google Scholar 

  • Witkin D B, Lavernia E J (2006) Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling. Progress in Materials Science 51 (1): 1–60

    Article  CAS  Google Scholar 

  • Wojcik C C (1991) High Temperature Niobium Alloys. In: Stephens J J, Ahmad I (eds) High Temperature Niobium Alloys. The Minerals, Metals and Materials Society, Warrendale, PA, USA, p 1–12

    Google Scholar 

  • Yamabe-Mitarai Y et al (2004) Platinum-Group-Metals-Based Intermetallics as High-Temperature Structural Materials. JOM 56 (9): 34–39

    Article  CAS  Google Scholar 

  • Yamabe-Mitarai Y, Murakami H (2014) Mechanical Properties at 2223 K and Oxidation Behavior of Ir Alloys. Intermetallics 48: 86–92

    Article  CAS  Google Scholar 

  • Yang J M et al (1997) Microstructure and Mechanical Behavior of in-situ Directional Solidified NiAl/Cr(Mo) Eutectic Composite. Acta Materialia 45 (1): 295–305

    Article  CAS  Google Scholar 

  • Yang R (1992) Equilibria and Microstructural Evolution in the β/β’/γ’ Region of the Ni-Al-Ti System: Modeling and Experiment. Acta Metallurgica et Materialia 40 (7): 1553–1562

    Article  CAS  Google Scholar 

  • Yang R et al (1991) A Microstructural Study of a Ni2AlTi-Ni(Al,Ti)-Ni3(Al,Ti) Three-Phase Alloy. Journal of Materials Research 6 (2): 343–354

    Article  CAS  Google Scholar 

  • Yang R et al (1992) Three-Phase β/β’/γ’ Ni-Al-Ti-(Cr,Fe) Alloys for High Temperature Use. Materials Science and Engineering A 152 (1–2): 227–236

    Article  Google Scholar 

  • Yu J L et al (2017) Mechanical Properties and Fracture Behavior of an Nb-Silicide in situ Composite. Intermetallics 90: 135–139

    Article  CAS  Google Scholar 

  • Yu K O et al (1993) Investment Casting of NiAl Single-Crystal Alloys. JOM 45 (5): 49–51

    Article  CAS  Google Scholar 

  • Yvon P, Carré F (2009) Structural Materials Challenges for Advanced Reactor Systems. Journal of Nuclear Materials 385 (2): 217–222

    Article  CAS  Google Scholar 

  • Zhao J-C, Westbrook J H (2003) Ultrahigh-Temperature Materials for Jet Engines. MRS Bulletin 28 (9): 622–630

    Article  CAS  Google Scholar 

Further Reading

  • Lagoudas D C (2007) Shape Memory Alloys – Modelling and Engineering Applications. Springer

    Google Scholar 

  • Lecce L, Concilio A (2015) Shape Memory Alloy Engineering: for Aerospace, Structural and Biomedical Applications. Butterworth-Heinemann

    Google Scholar 

  • Leo D J (2007) Engineering Analysis of Smart Material Systems. John Wiley & Sons Inc.

    Google Scholar 

  • Liu C T et al (1992) Ordered Intermetallics – Physical Metallurgy and Mechanical Behaviour. Springer Netherlands

    Book  Google Scholar 

  • Otsuka K, Ren X (2005) Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys. Progress in Materials Science 50 (5): 511–678

    Article  CAS  Google Scholar 

  • Sauthoff G (1995) Intermetallics. VCH, Weinheim

    Book  Google Scholar 

  • Schwartz M (2002) Encyclopedia of Smart Materials – 2 Volume Set. John Wiley & Sons

    Google Scholar 

  • Stoloff N S, Sikka V K (1996) Physical Metallurgy and Processing of Intermetallic Compounds. Chapman & Hall, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gialanella, S., Malandruccolo, A. (2020). Other Interesting Alloys for Aerospace and Related Applications. In: Aerospace Alloys . Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-24440-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24440-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24439-2

  • Online ISBN: 978-3-030-24440-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics