Skip to main content

Future Approaches in Liver Disorders: Regenerative Medicine

  • Chapter
  • First Online:
Liver Diseases

Abstract

End-stage liver disease benefits only from liver transplantation. As we shall see, the emerging field of regenerative medicine offers novel approaches to liver disease treatment based on a remarkable progress in basic biomedical research during the last 20–30 years. In this context, the major methods of regenerative medicine are cell therapy, tissue/organ engineering and bioartificial liver with promising results. At the present time, cell therapy is an important tool to evaluate liver regeneration, hepatoxicity of xenobiotics by CYP enzymes, and drug interactions. Moreover, bioartificial livers can remove the problematic lack of donor liver and allow disease modeling. Ultimately, advancements in liver genome editing might treat either hereditary monogenic liver disorders or viral hepatitis. Herein, we discuss the basic knowledge of liver regeneration and highlight the current methods of liver regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATF5:

Activating Transcription Factor 5

BAL:

bioartificial liver

BMPs:

bone morphogenetic protein

CEBPA:

CCAAT/enhancer binding protein (C/EBP) alpha

CYP:

cytochrome P450

DNMTi:

DNA methylation inhibitor

EGF:

epidermal growth factor

ESCs:

embryonic stem cells

FGF:

fibroblast growth factor

FGF:

fibroblast growth factor

FOXA1:

Forkhead Box A1

FOXA2:

Forkhead Box A2

FOXA3:

Forkhead Box A3

G-CSF:

Granulocyte-colony stimulating factor

HDACi:

histone deacetylase inhibitor

HGF:

hepatocyte growth factor

HLCs:

Hepatocyte like-cells

HNF1A:

hepatocyte nuclear factor 1 alpha or hepatocyte nuclear factor 1 homeobox alpha

HNF4A:

hepatocyte nuclear factor 4 alpha

HSCs:

hematopoietic stem cells

IL-6:

interleukin-6

iPSCs:

induced pluripotent stem cells

LSPCs:

liver stem/progenitor cells

MELD:

Model For End-Stage Liver Disease

MIR122:

MicroRNA 122

MSCs:

mesenchymal stem cells

NASH:

Nonalcoholic steatohepatitis

OSM:

oncostatin M

PPARα:

peroxisome proliferator-activated receptor α

PSCs:

pluripotent stem cells

TGFα:

transforming growth factor

TNFα:

tumor necrosis factor alpha

β-PDGRR:

platelet-derived growth factors

References

  1. Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The use of induced pluripotent stem cells for the study and treatment of liver diseases. Curr Protoc Toxicol. 2016;67:14.13.1–14.13.27. https://doi.org/10.1002/0471140856.tx1413s67.

    Article  Google Scholar 

  2. Dianat N, Steichen C, Vallier L, Weber A, Dubart-Kupperschmitt A. Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr Gene Ther. 2013;13(2):120–32.

    Article  CAS  Google Scholar 

  3. Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise review: liver regenerative medicine: from hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells. 2017;35(1):42–50. https://doi.org/10.1002/stem.2500.

    Article  PubMed  Google Scholar 

  4. Lee CW, Chen YF, Wu HH, Lee OK. Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology. 2018;154(1):46–56. https://doi.org/10.1053/j.gastro.2017.09.049.

    Article  PubMed  Google Scholar 

  5. Kholodenko IV, Yarygin KN. Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res Int. 2017;2017:8910821. https://doi.org/10.1155/2017/8910821.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:III–XIII, 1–151.

    CAS  PubMed  Google Scholar 

  7. Jacobs F, Gordts SC, Muthuramu I, De Geest B. The liver as a target organ for gene therapy: state of the art, challenges, and future perspectives. Pharmaceuticals (Basel). 2012;5(12):1372–92. https://doi.org/10.3390/ph5121372.

    Article  CAS  Google Scholar 

  8. Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561–74. https://doi.org/10.1016/j.stem.2014.04.010.

    Article  CAS  PubMed  Google Scholar 

  9. Kwon YJ, Lee KG, Choi D. Clinical implications of advances in liver regeneration. Clin Mol Hepatol. 2015;21(1):7–13. https://doi.org/10.3350/cmh.2015.21.1.7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee CA, Sinha S, Fitzpatrick E, Dhawan A. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. J Mol Med (Berl). 2018;96(6):469–81. https://doi.org/10.1007/s00109-018-1638-5.

    Article  CAS  Google Scholar 

  11. Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci. 2018;75(8):1307–24. https://doi.org/10.1007/s00018-017-2713-8.

    Article  CAS  PubMed  Google Scholar 

  12. Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo Clin Proc. 2014;89(3):414–24. https://doi.org/10.1016/j.mayocp.2013.10.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Overi D, Carpino G, Cardinale V, Franchitto A, Safarikia S, Onori P, Alvaro D, Gaudio E. Contribution of resident stem cells to liver and biliary tree regeneration in human diseases. Int J Mol Sci. 2018;19(10):E2917. https://doi.org/10.3390/ijms19102917.

    Article  CAS  PubMed  Google Scholar 

  14. Huppert SS, Campbell KM. Emerging advancements in liver regeneration and organogenesis as tools for liver replacement. Curr Opin Organ Transplant. 2016;21(6):581–7. https://doi.org/10.1097/MOT.0000000000000365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Puppi J, et al. Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant. 2012;21(1):1–10. https://doi.org/10.3727/096368911X566208.

    Article  PubMed  Google Scholar 

  16. Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol. 2015;62(1 Suppl):S157–69. https://doi.org/10.1016/j.jhep.2015.02.040.

    Article  CAS  PubMed  Google Scholar 

  17. Rezvani M, Grimm AA, Willenbring H. Assessing the therapeutic potential of lab-made hepatocytes. Hepatology. 2016;64(1):287–94. https://doi.org/10.1002/hep.28569.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reid LM. Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver, biliary tree, and pancreas. Hepatology. 2016;64(1):4–7. https://doi.org/10.1002/hep.28606.

    Article  PubMed  Google Scholar 

  19. Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther. 2016;7(1):71. https://doi.org/10.1186/s13287-016-0330-3.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Collin de l’Hortet A, Takeishi K, Guzman-Lepe J, Handa K, Matsubara K, Fukumitsu K, Dorko K, Presnell SC, Yagi H, Soto-Gutierrez A. Liver-regenerative transplantation: regrow and reset. Am J Transplant. 2016;16(6):1688–96. https://doi.org/10.1111/ajt.13678.

    Article  CAS  PubMed  Google Scholar 

  21. Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology challenges to in vitro maturation of hepatic stem cells. Gastroenterology. 2018;154(5):1258–72. https://doi.org/10.1053/j.gastro.2018.01.066.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In vitro generated hepatocyte-like cells: a novel tool in regenerative medicine and drug discovery. Cell J. 2017;19(2):204–17. https://doi.org/10.22074/cellj.2016.4362.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pietrosi G, Vizzini G, Gerlach J, Chinnici C, Luca A, Amico G, et al. Phases I-II matched case-control study of human fetal liver cell transplantation for treatment of chronic liver disease. Cell Transplant. 2015;24(8):1627–38.

    Article  Google Scholar 

  24. Du Y, Wang J, Jia J, Song N, Xiang C, Xu J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014;14(3):394–403.

    Article  CAS  Google Scholar 

  25. Nishikawa T, Bell A, Brooks JM, et al. Resetting the transcription factor network reverses terminal chronic hepatic failure. J Clin Investig. 2015;125(4):1533–44.

    Article  Google Scholar 

  26. Jang YY, Ye Z. Gene correction in patient-specific iPSCs for therapy development and disease modeling. Hum Genet. 2016;135(9):1041–58. https://doi.org/10.1007/s00439-016-1691-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gieseck RL III, Colquhoun J, Hannan NR. Disease modeling using human induced pluripotent stem cells: lessons from the liver. Biochim Biophys Acta. 2015;1851(1):76–89. https://doi.org/10.1016/j.bbalip.2014.05.010.

    Article  CAS  PubMed  Google Scholar 

  28. Li YH, Xu Y, Wu HM, et al. Umbilical cord-derived mesenchymal stem cell transplantation in hepatitis b virus related acute-on-chronic liver failure treated with plasma exchange and entecavir: a 24-month prospective study. Stem Cell Rev. 2016;12(6):645–53. https://doi.org/10.1007/s12015-016-9683-3

    Article  Google Scholar 

  29. Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods. 2016;99:44–61. https://doi.org/10.1016/j.ymeth.2015.08.015.

    Article  CAS  PubMed  Google Scholar 

  30. Davidson MD, Ware BR, Khetani SR. Stem cell-derived liver cells for drug testing and disease modeling. Discov Med. 2015;19(106):349–58.

    PubMed  PubMed Central  Google Scholar 

  31. Sanal MG. Cell therapy from bench to bedside: hepatocytes from fibroblasts - the truth and myth of transdifferentiation. World J Gastroenterol. 2015;21(21):6427–33. https://doi.org/10.3748/wjg.v21.i21.6427.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016;38(6):590–600. https://doi.org/10.1016/j.devcel.2016.08.014.

    Article  CAS  PubMed  Google Scholar 

  33. Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One. 2014;9(12):e113609. https://doi.org/10.1371/journal.pone.0113609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng. 2017;11:46. https://doi.org/10.1186/s13036-017-0081-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakiyama R, Blau BJ, Miki T. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells. World J Gastroenterol. 2017;23(11):1974–9. https://doi.org/10.3748/wjg.v23.i11.1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruiz de Galarreta M, Lujambio A. Therapeutic editing of hepatocyte genome in vivo. J Hepatol. 2017;67(4):818–28. https://doi.org/10.1016/j.jhep.2017.05.012.

    Article  PubMed  Google Scholar 

  37. Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017;15(3):369–75. https://doi.org/10.1590/S1679-45082017RB4024.

    Article  Google Scholar 

  38. Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12(5):316–28.

    Article  CAS  Google Scholar 

  39. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475:217–21.

    Article  CAS  Google Scholar 

  40. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013;122:3283–7.

    Article  CAS  Google Scholar 

  41. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32:551–3.

    Article  CAS  Google Scholar 

  42. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34:328–33.

    Article  CAS  Google Scholar 

  43. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which statement is true?

    1. (a)

      An important tool to evaluate liver regeneration is cell therapy.

    2. (b)

      Hepatocyte like-cells are manufactured only from human ESCs.

    3. (c)

      Hepatocyte like-cells from human ESCs are obtained from whole blastocyst.

    4. (d)

      Co-culturing uses only human umbilical vein endothelial cells.

  2. 2.

    Which statement/statements is/are true?

    1. (a)

      Microencapsulation technique defines the fixation of hepatocytes into a semipermeable polymer.

    2. (b)

      BAL systems are a temporary option in therapy of acute liver failure.

    3. (c)

      BAL systems contain hepatocytes located in a mechanical artificial liver support device.

    4. (d)

      Stem cell transplantation together with gene therapy can correct the metabolic deficits of inherited liver disease on long time.

1.2 Answers

  1. 1.

    Which statement is true?

    1. (a)

      Correct. Cell-based therapy is an important tool to evaluate liver regeneration, hepatotoxicity or metabolism of xenobiotics by CYP enzymes, drug interactions.

    2. (b)

      Hepatocyte like-cells are generated in vitro, from human pluripotent stem cells (PSCs), from human ESCs, iPSCs, gestational stem cells, and mesenchymal stem cells (MSCs).

    3. (c)

      Hepatocyte like-cells from human ESCs are obtained from inner part of blastocyst.

    4. (d)

      Co-culturing uses human MSCs, HUVEC-human umbilical vein endothelial cells, and human iPSCs-derived human endodermal cells.

  2. 2.

    Which statement/statements is/are true?

    1. (a)

      Correct.

    2. (b)

      Correct.

    3. (c)

      Correct.

    4. (d)

      Correct.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jinga, M., Balaban, V.D., Bontas, E., Tintoiu, I.C. (2020). Future Approaches in Liver Disorders: Regenerative Medicine. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics