Skip to main content

The Microbiome in Liver Diseases

  • Chapter
  • First Online:
Book cover Liver Diseases
  • 2868 Accesses

Abstract

The human microbiome project (HMP) was established in 2007 as a global consortium that aims at the sequencing of all microbes (eukaryotes, archaea, bacteria, viruses) that inhabit specific body sites, such as the mouth, throat and airways, stomach and intestine, the urogenital system and the skin, respectively. Recent data demonstrate that specific compositions of the microbial community are associated with health and disease and suggest that the detailed characterization, function and variation of the microbial community will reveal important commensal host-microbe as well as microbe-microbe interactions with diagnostic, therapeutic and preventive implications. Indeed, the intestinal microbial community in particular has turned out to play a role in liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  CAS  PubMed  Google Scholar 

  3. Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118:1590–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manolio TA, Collins FS. The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med. 2009;60:443–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, Ardau R, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387(10023):1085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe. 2011;10:287–91.

    Article  CAS  PubMed  Google Scholar 

  7. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.

    Article  CAS  PubMed  Google Scholar 

  8. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  CAS  Google Scholar 

  9. Human Microbiome Project C. A framework for human microbiome research. Nature. 2012;486:215–21.

    Article  CAS  Google Scholar 

  10. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10:e1001377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet. 2013;29:51–8.

    Article  CAS  PubMed  Google Scholar 

  12. Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A, Lowenberg M, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–8. e114

    Article  PubMed  Google Scholar 

  13. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–41.

    Article  CAS  PubMed  Google Scholar 

  15. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4.

    Article  CAS  PubMed  Google Scholar 

  18. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.

    Article  CAS  PubMed  Google Scholar 

  20. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, Boushey HA, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A. 2014;111:805–10.

    Article  CAS  PubMed  Google Scholar 

  23. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535:75–84.

    Article  CAS  PubMed  Google Scholar 

  26. Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, Kolde R, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.

    Article  CAS  PubMed  Google Scholar 

  28. Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW, Muller M, Kleerebezem M, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A. 2015;112:10038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reinhardt C, Bergentall M, Greiner TU, Schaffner F, Ostergren-Lunden G, Petersen LC, Ruf W, et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature. 2012;483:627–31.

    Article  CAS  PubMed  Google Scholar 

  30. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  CAS  Google Scholar 

  32. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  33. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–80. e1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, Heederik D, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364:701–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lynch SV, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M, O’Connor GT, et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol. 2014;134:593–601.e12.

    Article  PubMed  Google Scholar 

  42. Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, Ledford JG, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375:411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jonsson AL, Backhed F. Drug the bug! Cell. 2015;163:1565–6.

    Article  CAS  PubMed  Google Scholar 

  44. Tilg H. A gut feeling about thrombosis. N Engl J Med. 2016;374:2494–6.

    Article  PubMed  Google Scholar 

  45. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.

    Article  CAS  PubMed  Google Scholar 

  48. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 2016;7:12365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  PubMed  Google Scholar 

  51. Hall LJ, Walshaw J, Watson AJ. Gut microbiome in new-onset Crohn’s disease. Gastroenterology. 2014;147:932–4.

    Article  PubMed  Google Scholar 

  52. Sha S, Xu B, Wang X, Zhang Y, Wang H, Kong X, Zhu H, et al. The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagn Microbiol Infect Dis. 2013;75:245–51.

    Article  PubMed  Google Scholar 

  53. Forbes JD, Van Domselaar G, Bernstein CN. Microbiome survey of the inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. Inflamm Bowel Dis. 2016;22:817–25.

    Article  PubMed  Google Scholar 

  54. Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol. 2016;7:1081.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, Ding Y, Honda K, et al. Helminth infection promotes colonization resistance via type 2 immunity. Science. 2016;352:608–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE, Reider SJ, Hackl H, et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe. 2016;19:455–69.

    Article  CAS  PubMed  Google Scholar 

  57. Cantarel BL, Waubant E, Chehoud C, Kuczynski J, DeSantis TZ, Warrington J, Venkatesan A, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63:729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, Nelson H, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, Marmon S, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haque TR, Barritt AS. Intestinal microbiota in liver disease. Best Pract Res Clin Gastroenterol. 2016;30:133–42.

    Article  CAS  PubMed  Google Scholar 

  64. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64.

    Article  CAS  PubMed  Google Scholar 

  65. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  CAS  PubMed  Google Scholar 

  66. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Asp Med. 2013;34:39–58.

    Article  CAS  Google Scholar 

  67. Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016;10:S150–7.

    Article  PubMed  Google Scholar 

  68. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, Hoeffer CA, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Ota M, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7.

    Article  PubMed  Google Scholar 

  71. Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y, Liang CR, et al. A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol. 2015;22:1519–25.

    Article  PubMed  Google Scholar 

  72. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30:350–8.

    Article  PubMed  Google Scholar 

  73. Tasnim N, Abulizi N, Pither J, Hart MM, Gibson DL. Linking the gut microbial ecosystem with the environment: does gut health depend on where we live? Front Microbiol. 2017;8:1935.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G, Puchois V, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut. 2016;65:830–9.

    Article  CAS  PubMed  Google Scholar 

  75. Schnabl B. Liver capsule: mechanisms of alcoholic hepatitis. Hepatology. 2016;64:276.

    Article  PubMed  Google Scholar 

  76. Arab JP, Arrese M, Trauner M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol. 2018;13:321–50.

    Article  CAS  PubMed  Google Scholar 

  77. LaRusso NF, Tabibian JH, O’Hara SP. Role of the intestinal microbiome in cholestatic liver disease. Dig Dis. 2017;35:166–8.

    Article  PubMed  Google Scholar 

  78. Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M. Primary sclerosing cholangitis. Lancet. 2018;391:2547–59.

    Article  PubMed  Google Scholar 

  79. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016;65:2035–44.

    Article  CAS  PubMed  Google Scholar 

  80. Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res. 2017;179:49–59.

    Article  CAS  PubMed  Google Scholar 

  81. Acharya C, Sahingur SE, Bajaj JS. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight. 2017;2 https://doi.org/10.1172/jci.insight.94416.

  82. Brenner DA, Paik YH, Schnabl B. Role of gut microbiota in liver disease. J Clin Gastroenterol. 2015;49(Suppl 1):S25–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schramm C. Bile acids, the microbiome, immunity, and liver tumors. N Engl J Med. 2018;379:888–90.

    Article  PubMed  Google Scholar 

  84. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360 https://doi.org/10.1126/science.aan5931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Woodhouse CA, Patel VC, Singanayagam A, Shawcross DL. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment Pharmacol Ther. 2018;47:192–202.

    Article  CAS  PubMed  Google Scholar 

  86. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764–75.

    Article  CAS  PubMed  Google Scholar 

  87. Bajaj JS, Betrapally NS, Hylemon PB, Heuman DM, Daita K, White MB, Unser A, et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology. 2015;62:1260–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Conflict of interests: The author declares no conflict of interest.

Financial disclosure: The author has no financing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert E. Blum .

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Question

  1. 1.

    Which statement/statements is/are true?

    1. (a)

      Dysbiosis of the intestinal microbiome is the imbalance between protective and harmful bacteria

    2. (b)

      Emerging evidence points to a contribution of the microbiome to the pathogenesis of different aspects liver diseases

    3. (c)

      human intestinal microbiome is also involved in gastrointestinal as well as non-gastrointestinal diseases, such as obesity/metabolic syndrome, and atherosclerosis/cardiovascular as well as neurologic/psychiatric diseases.

    4. (d)

      there is a decrease of human gut microbiome diversity attributed to Western diet, life style practices, such as caesarean section, antibiotic use and formula-feeding of infants as well as sanitation of the living environment.

    5. (e)

      while human gut microbiota is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease (IBD), diabetes, obesity, allergies, asthma and others are on the rise in Western societies

1.2 Answer

  1. 1.

    Which statement/statements is/are true?

    1. (a)

      CORRECT

    2. (b)

      CORRECT. Emerging evidence points to a contribution of the microbiome to the pathogenesis of different aspects liver diseases including alcoholic liver disease, non-alcoholic fatty liver disease NAFLD, cholestatic liver diseases, liver cirrhosis and hepatocellular carcinoma (HCC), with special reference to bile acid metabolism

    3. (c)

      CORRECT

    4. (d)

      CORRECT

    5. (e)

      CORRECT

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blum, H.E. (2020). The Microbiome in Liver Diseases. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics