Skip to main content

Anatomy and Embryology of the Liver

  • Chapter
  • First Online:
  • 3421 Accesses

Abstract

This chapter deals in the first part with the anatomy of the liver, highlighting in particular the clinical anatomy and the relevant morphological aspects of practical interest to the physician, including the presence of the most frequent anatomical variations. Particular emphasis is given to the vascular organization that determines the subdivision into segments, whose understanding is fundamental in clinical diagnostics and in surgical practice. In the second part of the chapter the phenomena related to the morphogenesis of the liver are described in order to show the peculiar organization of the liver both at a macroscopic level and at a structural level. Moreover, the recent acquisitions on key signaling pathways and molecular mechanisms underlying the complex tissue interactions in hepatogenesis are briefly described. Due to the central regulatory role of the liver in many metabolic functions, this knowledge form the basis for the modern approaches to gene and molecular therapy of the liver. They may also contribute to understand how to promote liver regeneration, to engineer the replacement of functional liver tissues, or how to lead to therapeutically useful tissue for transplantation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krumm P, Schraml C, Bretschneider C, Seeger A, Klumpp B, Kramer U, Claussen CD, Miller S. Depiction of variants of the portal confluence venous system using multidetector row CT: analysis of 916 cases. Rofo. 2011;183:1123–9. https://doi.org/10.1055/s-0031-1281745.

    Article  CAS  PubMed  Google Scholar 

  2. Sakaguchi T, Suzuki S, Morita Y, Oishi K, Suzuki A, Fukumoto K, Inaba K, Kamiya K, Ota M, Setoguchi T, Takehara Y, Nasu H, Nakamura S, Konno H. Analysis of anatomic variants of mesenteric veins by 3-dimensional portography using multidetector-row computed tomography. Am J Surg. 2010;200:15–22. https://doi.org/10.1016/j.amjsurg.2009.05.017.

    Article  PubMed  Google Scholar 

  3. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT. Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology. 2002;224:542–7. https://doi.org/10.1148/radiol.2242011283.

    Article  PubMed  Google Scholar 

  4. Saba L, Mallarini G. Anatomic variations of arterial liver vascularization: an analysis by using MDCTA. Surg Radiol Anat. 2011;33:559–68. https://doi.org/10.1007/s00276-011-0778-x.

    Article  PubMed  Google Scholar 

  5. Fang CH, You JH, Lau WY, Lai EC, Fan YF, Zhong SZ, Li KX, Chen ZX, Su ZH, Bao SS. Anatomical variations of hepatic veins: three-dimensional computed tomography scans of 200 subjects. World J Surg. 2012;36:120–4. https://doi.org/10.1007/s00268-011-1297-y.

    Article  PubMed  Google Scholar 

  6. Hribernik M, Trotovšek B. Intrahepatic venous anastomoses with a focus on the middle hepatic vein anastomoses in normal human livers: anatomical study on liver corrosion casts. Surg Radiol Anat. 2014;36:231–7. https://doi.org/10.1007/s00276-013-1198-x.

    Article  PubMed  Google Scholar 

  7. Ohtani O, Ohtani Y. Lymph circulation in the liver. Anat Rec (Hoboken). 2008;291:643–52. https://doi.org/10.1002/ar.20681.

    Article  Google Scholar 

  8. McCuskey RS. Anatomy of efferent hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol. 2004;280:821–6. https://doi.org/10.1002/ar.a.20087.

    Article  PubMed  Google Scholar 

  9. Covey AM, Brody LA, Getrajdman GI, Sofocleous CT, Brown KT. Incidence, patterns, and clinical relevance of variant portal vein anatomy. AJR Am J Roentgenol. 2004;183:1055–64. https://doi.org/10.2214/ajr.183.4.1831055.

    Article  PubMed  Google Scholar 

  10. Onishi H, Kawarada Y, Das BC, Nakano K, Gadzijev EM, Ravnik D, Isaji S. Surgical anatomy of the medial segment (S4) of the liver with special reference to bile ducts and vessels. Hepato-Gastroenterology. 2000;47:143–50.

    CAS  PubMed  Google Scholar 

  11. Couinaud C. Le foie; études anatomiques et chirurgicales. Paris: Masson; 1957.

    Google Scholar 

  12. Delattre JF, Avisse C, Flament JB. Anatomic basis of hepatic surgery. Surg Clin North Am. 2000;80:345–62. https://doi.org/10.1016/S0039-6109(05)70409-6.

    Article  CAS  PubMed  Google Scholar 

  13. Chaib E, Kanas AF, Galvão FH, D'Albuquerque LA. Bile duct confluence: anatomic variations and its classification. Surg Radiol Anat. 2014;36:105–9. https://doi.org/10.1007/s00276-013-1157-6.

    Article  PubMed  Google Scholar 

  14. Lamah M, Karanjia ND, Dickson GH. Anatomical variations of the extrahepatic biliary tree: review of the world literature. Clin Anat. 2001;14:167–72. https://doi.org/10.1002/ca.1028.

    Article  CAS  PubMed  Google Scholar 

  15. Chen WJ, Ying DJ, Liu ZJ, He ZP. Analysis of the arterial supply of the extrahepatic bile ducts and its clinical significance. Clin Anat. 1999;12:245–9. https://doi.org/10.1002/(SICI)1098-2353(1999)12:4<245::AID-CA2>3.0.CO;2-W.

    Article  CAS  PubMed  Google Scholar 

  16. Zorn AM. Liver development. In: StemBook, editor. The stem cell research community. Cambridge: StemBook; 2008. https://doi.org/10.3824/stembook.1.25.1. http://www.stembook.org.

    Chapter  Google Scholar 

  17. Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development. 2015;142:2094–108. https://doi.org/10.1242/dev.114215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gruppuso PA, Sanders JA. Regulation of liver development: implications for liver biology across the lifespan. J Mol Endocrinol. 2016;56:R115–25. https://doi.org/10.1530/JME-15-0313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol. 2018;68:1049–62. https://doi.org/10.1016/j.jhep.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  20. Yin C. Molecular mechanisms of Sox transcription factors during the development of liver, bile duct, and pancreas. Semin Cell Dev Biol. 2017;63:68–78. https://doi.org/10.1016/j.semcdb.2016.08.015.

    Article  CAS  PubMed  Google Scholar 

  21. Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development. 1998;125:4909–17.

    CAS  PubMed  Google Scholar 

  22. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996;10:1670–82.

    Article  CAS  Google Scholar 

  23. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005;280:87–99. https://doi.org/10.1016/j.ydbio.2005.01.003.

    Article  CAS  PubMed  Google Scholar 

  24. Wilkins BJ, Pack M. Zebrafish Models of Human Liver Development and Disease. Compr Physiol. 2013;3:1213–30. https://doi.org/10.1002/cphy.c120021.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nemer G, Nemer M. Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Dev Biol. 2003;254:131–48. https://doi.org/10.1016/S0012-1606(02)00026-X.

    Article  CAS  PubMed  Google Scholar 

  26. Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F, Poss KD, Hammerschmidt M, Mullins MC, Stainier DY. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development. 2007;134:2041–50. https://doi.org/10.1242/dev.000281.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41:956–67. https://doi.org/10.1002/hep.20691.

    Article  CAS  PubMed  Google Scholar 

  28. McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007;134:2207–17. https://doi.org/10.1242/dev.001230.

    Article  CAS  PubMed  Google Scholar 

  29. Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signalling positively regulates liver specification. Nature. 2006;442:688–91. https://doi.org/10.1038/nature04888.

    Article  CAS  PubMed  Google Scholar 

  30. Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development. 2005;132:35–47. https://doi.org/10.1242/dev.01570.

    Article  CAS  PubMed  Google Scholar 

  31. Margagliotti S, Clotman F, Pierreux CE, Beaudry JB, Jacquemin P, Rousseau GG, Lemaigre FP. The Onecut transcription factors HNF-6/OC-1 and OC-2 regulate early liver expansion by controlling hepatoblast migration. Dev Biol. 2007;311:579–89. https://doi.org/10.1016/j.ydbio.2007.09.013.

    Article  CAS  PubMed  Google Scholar 

  32. Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA, Zon LI. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A. 1998;95:6881–6.

    Article  CAS  Google Scholar 

  33. Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 2006;20:2293–305. https://doi.org/10.1101/gad.390906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294:559–63. https://doi.org/10.1126/science.1063889.

    Article  CAS  PubMed  Google Scholar 

  35. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175–89. https://doi.org/10.1016/j.devcel.2010.01.011.

    Article  CAS  PubMed  Google Scholar 

  36. Hata M, Nanno M, Doi H, Satomi S, Sakata T, Suzuki R, Itoh T. Establishment of a hepatocytic epithelial cell line from the murine fetal liver capable of promoting hemopoietic cell proliferation. J Cell Physiol. 1993;154:381–92. https://doi.org/10.1002/jcp.1041540222.

    Article  CAS  PubMed  Google Scholar 

  37. Miyajima A, Kinoshita T, Tanaka M, Kamiya A, Mukouyama Y, Hara T. Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev. 2000;11:177–83.

    Article  CAS  Google Scholar 

  38. Wang Y, Wimmer U, Lichtlen P, Inderbitzin D, Stieger B, Meier PJ, Hunziker L, Stallmach T, Forrer R, Rülicke T, Georgiev O, Schaffner W. Metal-responsive transcription factor-1 (MTF-1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. FASEB J. 2004;18:1071–9. https://doi.org/10.1096/fj.03-1282com.

    Article  CAS  PubMed  Google Scholar 

  39. Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet. 2002;3:499–512. https://doi.org/10.1038/nrg837.

    Article  CAS  PubMed  Google Scholar 

  40. Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW, Ning G, Kaestner KH, Rossi JM, Zaret KS, Duncan SA. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet. 2003;34:292–6. https://doi.org/10.1038/ng1175.

    Article  CAS  PubMed  Google Scholar 

  41. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001;21:1393–403. https://doi.org/10.1128/MCB.21.4.1393-1403.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martinez-Jimenez CP, Kyrmizi I, Cardot P, Gonzalez FJ, Talianidis I. Hepatocyte nuclear factor 4alpha coordinates a transcription factor network regulating hepatic fatty acid metabolism. Mol Cell Biol. 2010;30:565–77. https://doi.org/10.1128/MCB.00927-09.

    Article  CAS  PubMed  Google Scholar 

  43. Lemaigre F, Zaret KS. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev. 2004;14:582–90. https://doi.org/10.1016/j.gde.2004.08.004.

    Article  CAS  PubMed  Google Scholar 

  44. Tchorz JS, Kinter J, Müller M, Tornillo L, Heim MH, Bettler B. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology. 2009;50:871–9. https://doi.org/10.1002/hep.23048.

    Article  CAS  PubMed  Google Scholar 

  45. Poncy A, Antoniou A, Cordi S, Pierreux CE, Jacquemin P, Lemaigre FP. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136–48. https://doi.org/10.1016/j.ydbio.2015.05.012.

    Article  CAS  PubMed  Google Scholar 

  46. Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development. 2002;129:1819–28.

    CAS  PubMed  Google Scholar 

  47. Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G, Babinet C, et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development. 2002;129:1829–38.

    CAS  PubMed  Google Scholar 

  48. Chen Y, Verfaillie CM. MicroRNAs: the fine modulators of liver development and function. Liver Int. 2014;34:976–90. https://doi.org/10.1111/liv.12496.

    Article  CAS  PubMed  Google Scholar 

  49. Lemaigre FP. Development of the biliary tract. Mech Dev. 2003;120:81–7. https://doi.org/10.1016/S0925-4773(02)00334-9.

    Article  CAS  PubMed  Google Scholar 

  50. Kamiya A, Gonzalez FJ. TNF-alpha regulates mouse fetal hepatic maturation induced by oncostatin M and extracellular matrices. Hepatology. 2004;40:527–36. https://doi.org/10.1002/hep.20362.

    Article  CAS  PubMed  Google Scholar 

  51. Jungermann K, Katz N. Functional specialization of different hepatocyte populations. Physiol Rev. 1989;69:708–64. https://doi.org/10.1152/physrev.1989.69.3.708.

    Article  CAS  PubMed  Google Scholar 

  52. Birchmeier W. Orchestrating Wnt signalling for metabolic liver zonation. Nat Cell Biol. 2016;18:463–5. https://doi.org/10.1038/ncb3349.

    Article  CAS  PubMed  Google Scholar 

  53. Kaestner KH. In the zone: how a hepatocyte knows where it is. Gastroenterology. 2009;137:425–7. https://doi.org/10.1053/j.gastro.2009.06.020.

    Article  PubMed  Google Scholar 

  54. Stanulović VS, Kyrmizi I, Kruithof-de Julio M, Hoogenkamp M, Vermeulen JL, Ruijter JM, Talianidis I, Hakvoort TB, Lamers WH. Hepatic HNF4alpha deficiency induces periportal expression of glutamine synthetase and other pericentral enzymes. Hepatology. 2007;45:433–44. https://doi.org/10.1002/hep.21456.

    Article  CAS  PubMed  Google Scholar 

  55. Loo CK, Wu XJ. Origin of stellate cells from submesothelial cells in a developing human liver. Liver Int. 2008;28:1437–45. https://doi.org/10.1111/j.1478-3231.2008.01788.x.

    Article  PubMed  Google Scholar 

  56. Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken). 2008;291:614–27. https://doi.org/10.1002/ar.20679.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Mr. Francesco Mastrostefano for his help in the artwork generation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Morini .

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which statement(s) is/are true?

    1. (a)

      The liver occupies the entire upper abdomen (right and left hypochondrium).

    2. (b)

      Liver fixation structures are the coronary ligament, the falciform ligament, the gastrocolic ligament, the adhesion to the diaphragm and the inferior vena cava.

    3. (c)

      In physiologic conditions the portal vein is responsible for more than 70% of the blood supply to the liver.

    4. (d)

      A focal lesion of the VIII segment of the liver is located in the lower part of the lateral or posterior left sector.

    5. (e)

      The extrahepatic biliary tract connects the liver with the gallbladder, pancreas and duodenum.

  2. 2.

    Which statement(s) is/are true?

    1. (a)

      The liver begins to develop during the third week of gestation and completes its morphological formation after birth.

    2. (b)

      The liver develops from the primitive endoderm without the contribution of cells from other embryonic tissues.

    3. (c)

      Undifferentiated stem cells completely disappear in the adult liver.

    4. (d)

      Different gene expression characterizes compartmentalized zonal regions in relation to the proximity to the portal triad or the central vein.

    5. (e)

      Hepatoblasts are bi-potential cells able to differentiate into hepatocytes and biliary epithelial cells.

1.2 Answers

  1. 1.

    Which statement(s) is/are true?

    1. (a)

      The liver occupies the entire right hypochondrium, and only part of the epigastrium and of the left hypochondrium.

    2. (b)

      The main fixation structures of the liver are the adhesion to the diaphragm through the coronary ligament and the bare area, and the vena cava. Other ligaments have little significance as fixation structures, and connect the liver to other organs allowing the passage of blood vessels. The gastrocolic ligament is not properly a ligament of the liver and connects the stomach and the transverse colon.

    3. (c)

      The portal vein is responsible for 70–80% of the blood supply to the liver in physiologic conditions (CORRECT), while the hepatic artery provides the remaining supply.

    4. (d)

      The VIII segment of the liver is located in the anterior superior position of the right sector.

    5. (e)

      The extrahepatic biliary tract include the gallbladder, and connects the liver with duodenum.

  2. 2.

    Which statement(s) is/are true?

    1. (a)

      The liver begins to develop in the middle of the third week of gestation and completes its formation at the end of the seventh week. However, it continues to acquire and increase its functions even after birth.

    2. (b)

      In the liver there are different populations of cells that come from various embryonic tissues (certainly at least from the endoderm and mesoderm): their interactions are essential for the correct development of the organ.

    3. (c)

      A little quote of undifferentiated stem cells, the hepatic progenitor cells, still remain in the adult liver.

    4. (d)

      (CORRECT) The heterogeneity of most enzyme in relation to the zonal position of the cells will develop gradually during early post-natal life. This phenomenon is the basis for the metabolic zonation of the adult liver.

    5. (e)

      Hepatoblasts are bi-potential cells that can differentiate into hepatocytes and biliary epithelial cells in relation to their position near or far to the branches of the portal vein and the extracellular matrix (CORRECT).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morini, S., Carpino, G., Carotti, S., Gaudio, E. (2020). Anatomy and Embryology of the Liver. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics