Abe, S.: Fuzzy support vector machines for multilabel classification. PR 48(6), 2110 (2015)
CrossRef
Google Scholar
Bai, T., et al.: Interpretable representation learning for healthcare via capturing disease progression through time. In: KDD, pp. 43–51. ACM (2018)
Google Scholar
Blockeel, H., Schietgat, L., Struyf, J., Clare, A., Dzeroski, S.: Hierarchical multilabel classification trees for gene function prediction. In: MLSB, pp. 9–14 (2006)
Google Scholar
Che, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y.: Deep computational phenotyping. In: KDD, pp. 507–516. ACM (2015)
Google Scholar
Che, Z., Purushotham, S., Khemani, R., Liu, Y.: Interpretable deep models for ICU outcome prediction. In: AMIA Annual Symposium Proceedings, vol. 2016, p. 371. American Medical Informatics Association (2017)
Google Scholar
Choi, E., et al.: Doctor AI: predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)
Google Scholar
Chui, M.: Artificial intelligence the next digital frontier? McKinsey and CGI, p. 47 (2017)
Google Scholar
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, pp. 681–687 (2002)
Google Scholar
Feng, Y., et al.: Patient outcome prediction via convolutional neural networks based on multi-granularity medical concept embedding. In: BIBM, pp. 770–777. IEEE (2017)
Google Scholar
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. CoRR (2018). arXiv:abs/1805.10820
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Pedreschi, D., Giannotti, F.: A survey of methods for explaining black box models. ACM CSUR 51(5), 93:1–93:42 (2018)
CrossRef
Google Scholar
Guidotti, R., Soldani, J., Neri, D., Brogi, A., Pedreschi, D.: Helping your Docker images to spread based on explainable models. In: ECML-PKDD. Springer, Berlin (2018)
Google Scholar
Lasko, T.A., et al.: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS One 8(6), e66341 (2013)
CrossRef
Google Scholar
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
CrossRef
Google Scholar
Malgieri, G., Comandé, G.: Why a right to legibility of automated decision-making exists in the general data protection regulation. Int. Data Priv. Law 7(4), 243–265 (2017)
CrossRef
Google Scholar
Miotto, R., et al.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)
CrossRef
Google Scholar
Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free text. In: BioNLP, pp. 97–104. Association for Computational Linguistics (2007)
Google Scholar
Rajkomar, A., et al.: Scalable and accurate deep learning with EHR. DM 1(1), 18 (2018)
Google Scholar
Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. In: KDD, pp. 1135–1144. ACM (2016)
Google Scholar
Sapozhnikova, E.P.: Art-based neural networks for multi-label classification. In: International Symposium on Intelligent Data Analysis, pp. 167–177. Springer, Berlin (2009)
CrossRef
Google Scholar
Shickel, B., et al.: Deep EHR: a survey of recent advances in deep learning techniques for EHR analysis. J. Biomed. Health Inform. 22(5), 1589–1604 (2018)
CrossRef
Google Scholar
Tan, P.-N. et al.: Introduction to data mining. Pearson Education India (2007)
Google Scholar
Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. (IJDWM) 3(3), 1–13 (2007)
CrossRef
Google Scholar
Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185 (2008)
CrossRef
Google Scholar
Wachter, S., et al.: Why a right to explanation of automated decision-making does not exist in the general data protection regulation. Int. Data Priv. Law 7(2), 76–99 (2017)
CrossRef
Google Scholar
Yadav, P., Steinbach, M., Kumar, V., Simon, G.: Mining electronic health records (EHRS): a survey. ACM Comput. Surv. (CSUR) 50(6), 85 (2018)
CrossRef
Google Scholar