Skip to main content

Physio-Mechanical Properties and Thermal Analysis of Furcreo Foetedo Mediopicta (ffm) Fibers: Its Potential Application as Reinforcement in Making of Composites

  • Conference paper
  • First Online:
International Conference on Emerging Trends in Engineering (ICETE)

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 2))

Abstract

In the past few decades, vegetable fibers became the viable alternative to petroleum-based fibers in composite industry, due to their renewability, biodegradability and eco-friendly properties. In the present work, a new leaf fiber extracted from Furcraea Foetida Mediopicto (ffm) plant, has been characterized and reported. Morphological, physical, mechanical and thermal properties of ffm fiber were examined by performing comprehensive characterization. Findings revealed that ffm fibers have an average low density and better mechanical properties compared to other fibers. Micro structural examination revealed the cross-section of the ffm fiber is the honeycomb structure. XRD analysis indicated the 49.7% crystalline content of ffm fiber. TG and DTA analysis revealed that ffm fibers are thermally stable up to 360 ℃. Present investigation, indicates that ffm fibers are highly suitable as reinforcement agents in polymeric matrices for various light weight-medium load-thermal insulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 1:1–15

    Article  Google Scholar 

  2. Lackey E, James GV, Kapil I (2008) Statistical characterization of pultruded composites with natural fiber reinforcements – part a: fabrication. J Nat Fibers 4:73–87

    Article  Google Scholar 

  3. Shah DU, Schubel PJ, Clifford MJ (2013) Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos Part B: Eng 52:172–181

    Article  Google Scholar 

  4. Popzyk, Klein (2017) DNFI awards. Discovery of natural fibres initiative

    Google Scholar 

  5. Paiva MC, Ammar I, Campos AR, Cheikh RB, Cunha AM (2017) Alfa fibers: mechanical, morphological and interfacial characterization. Compos Sc Tech 67:1132–1138

    Article  Google Scholar 

  6. Arifuzzaman Khan GM, Shahrear Palash SR, Shamsul Alam M, Chakraborty AK, Gafur MA, Terano M (2012) Isolation and characterization of betel nut leaf fiber: its potential application in making composites. J Pol Comput 33:764–772

    Article  Google Scholar 

  7. Sreenivasan VS, Somasundaram S, Ravindran D, Manikandan V, Narayanasamy R (2011) Microstructural physico-chemical and mechanical characterization of Sansevieriacylindricafibres – an exploratory investigation. J Mater Des 32:453–461

    Article  Google Scholar 

  8. Senthamaraikannan P, Sanjay MR, Subrahmanya Bhat K, Padmaraj NH, Jawaid M (2018, in press) Characterization of natural cellulosic fibre from bark of Albiziaamara. J Nat Fibres. https://doi.org/10.1080/15440478.2018.1453432

  9. Santhanam K, Kumaravel A, Saravanakumar SS, Arthanarieswaran VP (2016) Characterization of new natural cellulosic fibre from the Ipomoea staphylina plant. IJPAC 21:267–274

    Google Scholar 

  10. Saravanakumar SS, Kumaravel A, Nagarajan T, Sudhakard P, Baskarane R (2013) Characterization of a novel natural cellulosic fiber from Prosopisjuliflora bark. Carbohydr Polym 92:1928–1933

    Article  Google Scholar 

  11. Villagenurseries, furcraea-foetida mediopicta. https://www.villagenurseries.com/product/furcraea-foetida-medio-picta/

  12. My bageecha, furcraea-foetida-medio-picta. https://mybageecha.com/products/furcraea-foetida-mediopicta

  13. Binoj JS, Edwin Raj R, Sreenivasan VS, Rexin Thusnavis G (2016) Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibres (Areca Catechu L.) as potential alternate for hazardous synthetic fibres. J Bionic Eng 13:156–165

    Article  Google Scholar 

  14. Beakou A, Ntenga R, Lepetit J, Ateba JA, Ayina LO (2008) Physico-chemical and microstructural characterization of ‘‘Rhectophyllumcamerunense’’ plant fibre. Compos: Part A 39:67–74

    Article  Google Scholar 

  15. Yusriah L, Sapuan SM, Zainudin ES, Mariatti M (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (areca catechu.) husk fibre. J Cleaner Prod 72:174–180

    Article  Google Scholar 

  16. Spinace MAS, Lambert CS, Fermoselli KKG, De Paoli M-A (2009) Characterization of lignocellulosiccurauafibres. J. Carbohydr Polym 77:47–53

    Article  Google Scholar 

  17. Biagiotti J (2004) A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Compos 25:470–479

    Article  Google Scholar 

  18. Liu W, Mohanty AK, Drzal LT, Askel P, Misra M (2004) Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci 39:1051–1054

    Article  Google Scholar 

  19. ASTM D3379-75 (1975) Test method for tensile strength and young’s modulus for high-modulus single-filament materials. ASTM standard

    Google Scholar 

  20. Murherjee PS, Satyanarayana KG (1984) Structure properties of some vegetable fibres, part 1. Sisal fibre. J Mater Sci 19:3925–3934

    Article  Google Scholar 

  21. Zeriouh A, Belbirl L (1995) Thermal decomposition of a Moroccan wood under a nitrogen atmosphere. J Thermochimia Acta 258:243–248

    Article  Google Scholar 

  22. D’Almeida ALFS, Barreto DW, Calado V, d’Almeida JRM (2008) Thermal analysis of less common lignocellulosicfibres. J Therm Anal Cal 91:405–408

    Article  Google Scholar 

  23. Amar B, Salem K, Hocine D, Chadia I, Juan MJ (2011) Study and characterization of composites materials based on polypropylene load with olive husk flour. J Appl Polym Sci 122:1382–1394

    Article  Google Scholar 

  24. Sgriccia N, Hawley MC (2007) Thermal morphological and electrical characterization of microwave processed natural fibre composites. Compos Sci Technol 67:1986–1991

    Article  Google Scholar 

  25. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  Google Scholar 

  26. Zhang XJ, Yi XS, Xu YZ (2008) Cure-induced phase separation of epoxy/DDS/PEK-C composites and its temperature dependency. J Appl Polym Sci 109:2195–2206

    Article  Google Scholar 

  27. Li G, Li P, Zhang C, Yu Y, Liu H, Zhang S, Jia X, Yang X, Xue Z, Ryu S (2008) In homogeneous toughening of carbon fiber/epoxy composite using electro spun polysulfonenano fibrous membranes by in situ phase separation. J. Compos Sci Tech 68:987–994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pathan Yasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasin, P., Venkataramana, M., Kudari, S.K. (2020). Physio-Mechanical Properties and Thermal Analysis of Furcreo Foetedo Mediopicta (ffm) Fibers: Its Potential Application as Reinforcement in Making of Composites. In: Satapathy, S., Raju, K., Molugaram, K., Krishnaiah, A., Tsihrintzis, G. (eds) International Conference on Emerging Trends in Engineering (ICETE). Learning and Analytics in Intelligent Systems, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-24314-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24314-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24313-5

  • Online ISBN: 978-3-030-24314-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics