Skip to main content

Periodic INAR(1) Models with Skellam-Distributed Innovations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11621)


In this paper, an integer-valued autoregressive model of order one (INAR(1)) with time-varying parameters and driven by a periodic sequence of innovations is introduced. The proposed INAR(1) model is based on the signed thinning operator defined by Kachour and Truquet (2011) and conveniently adapted to the periodic case. Basic notations and definitions concerning the periodic signed thinning operator are provided. Based on this thinning operator, Chesneau and Kachour (2012) established a signed INAR(1) model. Motivated by the work of Chesneau and Kachour (2012), we introduce a periodic model, denoted by S-PINAR(1), with period s. In contrast to conventional INAR(1) models, these models are defined in \(\mathbb {Z}\) allowing for negative values both for the series and its autocorrelation function. For a proper \(\mathbb {Z}\)-valued time series, a distribution for the innovation term defined on \(\mathbb {Z}\) is required. The S-PINAR(1) model assumes a specific innovation distribution, the Skellam distribution. Regarding parameter estimation, two methods are considered: conditional least squares and conditional maximum likelihood. The performance of the S-PINAR(1) model is assessed through a simulation study.


  • Integer-valued autoregressive models
  • Signed thinning operator
  • Skellam distribution

Supported by Fundação para a Ciência e a Tecnologia (FCT), within projects UID/MAT/04106/2019 (CIDMA) and UID/Multi/04621/2019 (CEMAT/IST-ID).

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24302-9_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-24302-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  • Alzaid, A.A., Omair, M.A.: On the poisson difference distribution inference and applications. Bull. Malays. Math. Sci. Soc. 8(33), 17–45 (2010)

    MathSciNet  MATH  Google Scholar 

  • Alzaid, A.A., Omair, M.A.: An extended binomial distribution with applications. Commun. Stat.-Theory Methods 41(19), 3511–3527 (2012)

    MathSciNet  CrossRef  Google Scholar 

  • Alzaid, A.A., Omair, M.A.: Poisson difference integer-valued autoregressive model of order one. Bull. Malays. Math. Sci. Soc. 2(37), 465–485 (2014)

    MathSciNet  MATH  Google Scholar 

  • Andersson, J., Karlis, D.: A parametric time series model with covariates for integers in \(Z\). Stat. Model. 14(2), 135–156 (2014)

    MathSciNet  CrossRef  Google Scholar 

  • Bakouch, H.S., Kachour, M., Nadarajah, S.: An extended poisson distribution. Commun. Stat.-Theory Methods 45(22), 6746–6764 (2016)

    MathSciNet  CrossRef  Google Scholar 

  • Chesneau, C., Kachour, M.: A parametric study for the first-order signed integer-valued autoregressive process. J. Stat. Theory Pract. 6(4), 760–782 (2012)

    MathSciNet  CrossRef  Google Scholar 

  • Kachour, M., Truquet, L.: A \(p\)-order signed integer-valued autoregressive (SINAR(\(p\))) model. J. Time Ser. Anal. 2(3), 223–236 (2011)

    MathSciNet  CrossRef  Google Scholar 

  • Karlis, D., Ntzoufras, I.: Bayesian modelling of football outcomes: using the Skellam’s distribution for the goal difference. J. Manag. Math. 20(2), 133–145 (2009)

    MATH  Google Scholar 

  • Kim, H., Park, Y.: A non-stationary integer-valued autoregressive model. Stat. Papers 49(3), 485–502 (2008)

    MathSciNet  CrossRef  Google Scholar 

  • Klimko, L.A., Nelson, P.I.: On conditional least squares estimation for stochastic processes. Ann. Stat. 6(3), 629–642 (1978)

    MathSciNet  CrossRef  Google Scholar 

  • Skellam, J.G.: The frequency distribution of the difference between two poisson variates belonging to different populations. J. Royal Stat. Soc. 109(3), 296 (1946)

    MathSciNet  CrossRef  Google Scholar 

  • Steutel, F.W., van Harn, K.: Discrete analogues of self-decomposability and stability. Ann. Probab. 7(5), 893–899 (1979)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Cláudia Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Santos, C., Pereira, I., Scotto, M. (2019). Periodic INAR(1) Models with Skellam-Distributed Innovations. In: , et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24301-2

  • Online ISBN: 978-3-030-24302-9

  • eBook Packages: Computer ScienceComputer Science (R0)