Abstract
Hyperspectral images have been increasingly important in object detection applications especially in remote sensing scenarios. Machine learning algorithms have become emerging tools for hyperspectral image analysis. The high dimensionality of hyperspectral images and the availability of simulated spectral sample libraries make deep learning an appealing approach. This report reviews recent data processing and object detection methods in the area including hand-crafted and automated feature extraction based on deep learning neural networks. The accuracy performances were compared according to existing reports as well as our own experiments (i.e., re-implementing and testing on new datasets). CNN models provided reliable performance of over 97% detection accuracy across a large set of HSI collections. A wide range of data were used: a rural area (Indian Pines data), an urban area (Pavia University), a wetland region (Botswana), an industrial field (Kennedy Space Center), to a farm site (Salinas). Note that, the Botswana set was not reviewed in recent works, thus high accuracy selected methods were newly compared in this work. A plain CNN model was also found to be able to perform comparably to its more complex variants in target detection applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adler-Golden, S.M., Bernstein, L.S., Matthew, M.W., Sundberg, R.L., Ratkowski, A.J.: Atmospheric compensation of extreme off-nadir hyperspectral imagery from hyperion. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, vol. 6565, p. 65651P. International Society for Optics and Photonics (2007)
Archibald, R., Fann, G.: Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci. Remote Sens. Lett. 4(4), 674–677 (2007)
Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting manifold geometry in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005)
Bachmann, C.M., et al.: Bathymetric retrieval from hyperspectral imagery using manifold coordinate representations. IEEE Trans. Geosci. Remote Sens. 47(3), 884 (2009)
Bachmann, C.M., Ainsworth, T.L., Fusina, R.A., Topping, R., Gates, T.: Manifold coordinate representations of hyperspectral imagery: improvements in algorithm performance and computational efficiency. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4244–4247. IEEE (2010)
Bandos, T.V., Bruzzone, L., Camps-Valls, G.: Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 47(3), 862–873 (2009)
Baumgardner, M.F., Biehl, L.L., Landgrebe, D.A.: 220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site 3, September 2015. https://doi.org/10.4231/R7RX991C, https://purr.purdue.edu/publications/1947/1
Bayliss, J.D., Gualtieri, J.A., Cromp, R.F.: Analyzing hyperspectral data with independent component analysis. In: 26th AIPR Workshop: Exploiting New Image Sources and Sensors, vol. 3240, pp. 133–144. International Society for Optics and Photonics (1998)
Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)
Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)
Bruzzone, L., Serpico, S.B.: A technique for feature selection in multiclass problems. Int. J. Remote Sens. 21(3), 549–563 (2000)
Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)
Camps-Valls, G., Mooij, J., Scholkopf, B.: Remote sensing feature selection by kernel dependence measures. IEEE Trans. Geosci. Remote Sens. 7(3), 587–591 (2010)
Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49, 3973–3985 (2011)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)
Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)
Crawford, M.M., Ghosh, J.: Random forests of binary hierarchical classifiers for analysis of hyperspectral data. In: IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data 2003, pp. 337–345 (2003)
De Backer, S., Kempeneers, P., Debruyn, W., Scheunders, P.: A band selection technique for spectral classification. IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005)
Fotiadou, K., Tsagkatakis, G., Tsakalides, P.: Spectral super-resolution for hyperspectral images via sparse representations. In: Living Planet Symposium, vol. 740, p. 417 (2016)
Gewali, U.B., Monteiro, S.T., Saber, E.: Machine learning based hyperspectral image analysis: a survey. arXiv preprint arXiv:1802.08701 (2018)
Ghamisi, P., et al.: Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)
Guo, B., Gunn, S.R., Damper, R.I., Nelson, J.D.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3(4), 522–526 (2006)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theor. 14(1), 55–63 (1968)
Ji, R., Gao, Y., Hong, R., Liu, Q., Tao, D., Li, X.: Spectral-spatial constraint hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52(3), 1811–1824 (2014)
Landgrebe, D.A.: Signal theory methods in multispectral remote sensing, vol. 29. Wiley, Hoboken (2005)
Li, W., Wu, G., Zhang, F., Du, Q.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2017)
Ma, L., Crawford, M.M., Tian, J.: Local manifold learning-based \( k \)-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(11), 4099–4109 (2010)
Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4959–4962, July 2015. https://doi.org/10.1109/IGARSS.2015.7326945
Marinoni, A., Gamba, P.: A novel approach for efficient \(p\)-linear hyperspectral unmixing. IEEE J. Sel. Top. Signal Process. 9(6), 1156–1168 (2015)
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)
Mirzapour, F., Ghassemian, H.: Improving hyperspectral image classification by combining spectral, texture, and shape features. Int. J. Remote Sens. 36(4), 1070–1096 (2015)
Morgan, J.: Adaptive hierarchical classifier with limited training data. Ph.D. thesis, Department of Mechanical Engineering, University of Texas at Austin (2002)
Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)
Mura, M.D., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8, 542–546 (2011)
Na, L., Wunian, Y.: Hyperspectral remote sensing image feature extraction based on kernel minimum noise fraction transformation. Remote Sens. Technol. Appl. 2, 013 (2013)
Nielsen, A.A.: Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Trans. Image Process. 20(3), 612–624 (2011)
Nogueira, K., Penatti, O.A., dos Santos, J.A.: Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn. 61, 539–556 (2017)
Özdemir, A.O.B., Gedik, B.E., Çetin, C.Y.Y.: Hyperspectral classification using stacked autoencoders with deep learning. In: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4. IEEE (2014)
Paoletti, M., Haut, J., Plaza, J., Plaza, A.: A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogrammetry Remote Sens. (2017)
Plaza, A., Martinez, P., Plaza, J., Perez, R.: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geosci. Remote Sens. 43(3), 466–479 (2005)
Song, W., Li, S., Fang, L., Lu, T.: Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 56(6), 3173–3184 (2018)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Suen, P.H., Healey, G., Slater, D.: The impact of viewing geometry on material discriminability in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 39(7), 1352–1359 (2001)
Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7, 736–740 (2010)
Wang, W., Dou, S., Jiang, Z., Sun, L.: A fast dense spectral-spatial convolution network framework for hyperspectral images classification. Remote Sens. 10(7), 1068 (2018)
Xinhua, J., Heru, X., Lina, Z., Yanqing, Z.: Hyperspectral data feature extraction using deep belief network. Int. J. Smart Sens. Intell. Syst. 9(4) (2016)
Yang, X., Ye, Y., Li, X., Lau, R.Y., Zhang, X., Huang, X.: Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. (2018)
Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2017)
Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 8(5), 438–447 (2017)
Zhong, P., Gong, Z., Schnlieb, C.: A diversified deep belief network for hyperspectral image classification. In: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7, pp. 443–449 (2016)
Acknowledgment
This paper includes research that was supported by DMTC Limited (Australia). The authors have prepared this paper in accordance with the intellectual property rights granted to partners from the original DMTC project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pham, T.T. et al. (2019). Airborne Object Detection Using Hyperspectral Imaging: Deep Learning Review. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-24289-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24288-6
Online ISBN: 978-3-030-24289-3
eBook Packages: Computer ScienceComputer Science (R0)