Skip to main content

Airborne Object Detection Using Hyperspectral Imaging: Deep Learning Review

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Included in the following conference series:

Abstract

Hyperspectral images have been increasingly important in object detection applications especially in remote sensing scenarios. Machine learning algorithms have become emerging tools for hyperspectral image analysis. The high dimensionality of hyperspectral images and the availability of simulated spectral sample libraries make deep learning an appealing approach. This report reviews recent data processing and object detection methods in the area including hand-crafted and automated feature extraction based on deep learning neural networks. The accuracy performances were compared according to existing reports as well as our own experiments (i.e., re-implementing and testing on new datasets). CNN models provided reliable performance of over 97% detection accuracy across a large set of HSI collections. A wide range of data were used: a rural area (Indian Pines data), an urban area (Pavia University), a wetland region (Botswana), an industrial field (Kennedy Space Center), to a farm site (Salinas). Note that, the Botswana set was not reviewed in recent works, thus high accuracy selected methods were newly compared in this work. A plain CNN model was also found to be able to perform comparably to its more complex variants in target detection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler-Golden, S.M., Bernstein, L.S., Matthew, M.W., Sundberg, R.L., Ratkowski, A.J.: Atmospheric compensation of extreme off-nadir hyperspectral imagery from hyperion. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, vol. 6565, p. 65651P. International Society for Optics and Photonics (2007)

    Google Scholar 

  2. Archibald, R., Fann, G.: Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci. Remote Sens. Lett. 4(4), 674–677 (2007)

    Article  Google Scholar 

  3. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting manifold geometry in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005)

    Article  Google Scholar 

  4. Bachmann, C.M., et al.: Bathymetric retrieval from hyperspectral imagery using manifold coordinate representations. IEEE Trans. Geosci. Remote Sens. 47(3), 884 (2009)

    Article  Google Scholar 

  5. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A., Topping, R., Gates, T.: Manifold coordinate representations of hyperspectral imagery: improvements in algorithm performance and computational efficiency. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4244–4247. IEEE (2010)

    Google Scholar 

  6. Bandos, T.V., Bruzzone, L., Camps-Valls, G.: Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 47(3), 862–873 (2009)

    Article  Google Scholar 

  7. Baumgardner, M.F., Biehl, L.L., Landgrebe, D.A.: 220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site 3, September 2015. https://doi.org/10.4231/R7RX991C, https://purr.purdue.edu/publications/1947/1

  8. Bayliss, J.D., Gualtieri, J.A., Cromp, R.F.: Analyzing hyperspectral data with independent component analysis. In: 26th AIPR Workshop: Exploiting New Image Sources and Sensors, vol. 3240, pp. 133–144. International Society for Optics and Photonics (1998)

    Google Scholar 

  9. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  10. Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)

    Article  Google Scholar 

  11. Bruzzone, L., Serpico, S.B.: A technique for feature selection in multiclass problems. Int. J. Remote Sens. 21(3), 549–563 (2000)

    Article  Google Scholar 

  12. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  13. Camps-Valls, G., Mooij, J., Scholkopf, B.: Remote sensing feature selection by kernel dependence measures. IEEE Trans. Geosci. Remote Sens. 7(3), 587–591 (2010)

    Article  Google Scholar 

  14. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  15. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49, 3973–3985 (2011)

    Article  Google Scholar 

  16. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)

    Article  Google Scholar 

  17. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)

    Article  Google Scholar 

  18. Crawford, M.M., Ghosh, J.: Random forests of binary hierarchical classifiers for analysis of hyperspectral data. In: IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data 2003, pp. 337–345 (2003)

    Google Scholar 

  19. De Backer, S., Kempeneers, P., Debruyn, W., Scheunders, P.: A band selection technique for spectral classification. IEEE Geosci. Remote Sens. Lett. 2(3), 319–323 (2005)

    Article  Google Scholar 

  20. Fotiadou, K., Tsagkatakis, G., Tsakalides, P.: Spectral super-resolution for hyperspectral images via sparse representations. In: Living Planet Symposium, vol. 740, p. 417 (2016)

    Google Scholar 

  21. Gewali, U.B., Monteiro, S.T., Saber, E.: Machine learning based hyperspectral image analysis: a survey. arXiv preprint arXiv:1802.08701 (2018)

  22. Ghamisi, P., et al.: Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)

    Article  Google Scholar 

  23. Guo, B., Gunn, S.R., Damper, R.I., Nelson, J.D.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3(4), 522–526 (2006)

    Article  Google Scholar 

  24. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theor. 14(1), 55–63 (1968)

    Article  Google Scholar 

  26. Ji, R., Gao, Y., Hong, R., Liu, Q., Tao, D., Li, X.: Spectral-spatial constraint hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52(3), 1811–1824 (2014)

    Article  Google Scholar 

  27. Landgrebe, D.A.: Signal theory methods in multispectral remote sensing, vol. 29. Wiley, Hoboken (2005)

    Google Scholar 

  28. Li, W., Wu, G., Zhang, F., Du, Q.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2017)

    Article  Google Scholar 

  29. Ma, L., Crawford, M.M., Tian, J.: Local manifold learning-based \( k \)-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(11), 4099–4109 (2010)

    Google Scholar 

  30. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4959–4962, July 2015. https://doi.org/10.1109/IGARSS.2015.7326945

  31. Marinoni, A., Gamba, P.: A novel approach for efficient \(p\)-linear hyperspectral unmixing. IEEE J. Sel. Top. Signal Process. 9(6), 1156–1168 (2015)

    Google Scholar 

  32. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  33. Mirzapour, F., Ghassemian, H.: Improving hyperspectral image classification by combining spectral, texture, and shape features. Int. J. Remote Sens. 36(4), 1070–1096 (2015)

    Google Scholar 

  34. Morgan, J.: Adaptive hierarchical classifier with limited training data. Ph.D. thesis, Department of Mechanical Engineering, University of Texas at Austin (2002)

    Google Scholar 

  35. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)

    Article  Google Scholar 

  36. Mura, M.D., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8, 542–546 (2011)

    Article  Google Scholar 

  37. Na, L., Wunian, Y.: Hyperspectral remote sensing image feature extraction based on kernel minimum noise fraction transformation. Remote Sens. Technol. Appl. 2, 013 (2013)

    Google Scholar 

  38. Nielsen, A.A.: Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Trans. Image Process. 20(3), 612–624 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nogueira, K., Penatti, O.A., dos Santos, J.A.: Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn. 61, 539–556 (2017)

    Article  Google Scholar 

  40. Özdemir, A.O.B., Gedik, B.E., Çetin, C.Y.Y.: Hyperspectral classification using stacked autoencoders with deep learning. In: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4. IEEE (2014)

    Google Scholar 

  41. Paoletti, M., Haut, J., Plaza, J., Plaza, A.: A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogrammetry Remote Sens. (2017)

    Google Scholar 

  42. Plaza, A., Martinez, P., Plaza, J., Perez, R.: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geosci. Remote Sens. 43(3), 466–479 (2005)

    Article  Google Scholar 

  43. Song, W., Li, S., Fang, L., Lu, T.: Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 56(6), 3173–3184 (2018)

    Article  Google Scholar 

  44. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Suen, P.H., Healey, G., Slater, D.: The impact of viewing geometry on material discriminability in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 39(7), 1352–1359 (2001)

    Article  Google Scholar 

  46. Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7, 736–740 (2010)

    Article  Google Scholar 

  47. Wang, W., Dou, S., Jiang, Z., Sun, L.: A fast dense spectral-spatial convolution network framework for hyperspectral images classification. Remote Sens. 10(7), 1068 (2018)

    Article  Google Scholar 

  48. Xinhua, J., Heru, X., Lina, Z., Yanqing, Z.: Hyperspectral data feature extraction using deep belief network. Int. J. Smart Sens. Intell. Syst. 9(4) (2016)

    Article  Google Scholar 

  49. Yang, X., Ye, Y., Li, X., Lau, R.Y., Zhang, X., Huang, X.: Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. (2018)

    Google Scholar 

  50. Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2017)

    Article  Google Scholar 

  51. Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 8(5), 438–447 (2017)

    Article  Google Scholar 

  52. Zhong, P., Gong, Z., Schnlieb, C.: A diversified deep belief network for hyperspectral image classification. In: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7, pp. 443–449 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This paper includes research that was supported by DMTC Limited (Australia). The authors have prepared this paper in accordance with the intellectual property rights granted to partners from the original DMTC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, T.T. et al. (2019). Airborne Object Detection Using Hyperspectral Imaging: Deep Learning Review. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics