Skip to main content

A Tutorial of Graph Representation

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11632))

Included in the following conference series:

Abstract

With the development of network technology, graphs exist widely in real life, such as social networks, communication networks, biological networks, etc. Analyzing the structural of these graphs will have a far-reaching impact on various network applications. For example, node classification, link prediction, clustering, visualization. Traditional graph representation methods suffer a lot of space and time cost. In recent years, a category of technology which convert nodes into a low-dimensional vector has emerged. In this paper, First, we briefly introduce the development and challenges of graph representation algorithms. Then we introduce the existing methods of graph representation in the literature. It is mainly divided into three parts: node embedding, embedding based on heterogeneous graph, subgraph embedding. Node embedding algorithms are mainly divided into four categories: matrix factorization-based algorithms, random walk based algorithms, deep learning based algorithms and the algorithm based on the role of node structure. In addition, we also introduce LINE algorithms, embedding based on heterogeneous graph and sub-graph (whole graph) embedding algorithms. Finally, we introduce the related applications of graph embedding and the summary of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI, pp. 203–209 (2017)

    Google Scholar 

  2. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 115–148. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_5

    Chapter  Google Scholar 

  3. Wei, X., Xu, L., Cao, B., Yu, P.S.: Cross view link prediction by learning noise-resilient representation consensus. In: WWW, pp. 1611–1619 (2017)

    Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS (2002)

    Google Scholar 

  5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, vol. 14, pp. 585–591 (2001)

    Google Scholar 

  7. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings 20th International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  9. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  10. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp. 1145–1152 (2016)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907

  12. Svante, W., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Google Scholar 

  13. Kruskal, J.B., Wish, M.: Multidimensional Scaling, vol. 11. Sage, London (1978)

    Book  Google Scholar 

  14. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. ACM (2015)

    Google Scholar 

  15. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 37–48. ACM (2013)

    Google Scholar 

  16. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  Google Scholar 

  17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, vol. abs/1301.3781 (2013)

    Google Scholar 

  18. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: KDD (2015)

    Google Scholar 

  19. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: HARP: hierarchical representation learning for networks. arXiv preprint arXiv:1706.07845 (2017)

  20. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NIPS Workshop on Bayesian Deep Learning (2016)

    Google Scholar 

  21. Bullinaria, J.A., Levy, J.P.: Extracting semantic representations from word co-occurrence statistics: a computational study. Behav. Res. Methods 39(3), 510–526 (2007)

    Article  Google Scholar 

  22. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned from word embeddings. TACL 3, 211–225 (2015)

    Google Scholar 

  23. van den Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017)

  24. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS (2016)

    Google Scholar 

  25. Donnat, C., Zitnik, M., Hallac, D., Leskovec, J.: Learning structural node embeddings via diffusion wavelets. arXiv preprint arXiv:1710.10321 (2017)

  26. Henderson, K., et al: RoIX: structural role extraction & mining in large graphs. In: KDD (2012)

    Google Scholar 

  27. Chang, S., Han, W., Tang, J., Qi, G., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: KDD (2015)

    Google Scholar 

  28. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for heterogeneous networks. In: KDD (2017)

    Google Scholar 

  29. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  30. Schlichtkrull, M., Kipf, T.N., Bloem, P., vandenBerg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. arXiv preprint arXiv:1703.06103 (2017)

  31. Fang, H., Wu, F., Zhao, Z., Duan, X., Zhuang, Y., Ester, M.: Community-based question answering via heterogeneous social network learning. In: AAAI, pp. 122–128 (2016)

    Google Scholar 

  32. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information cascades. In: WWW, pp. 577–586 (2017)

    Google Scholar 

  33. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: NIPS (2015)

    Google Scholar 

  34. Backstromand, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: WSDM (2011)

    Google Scholar 

  35. De Oliveira, M.C.F., Levkowitz, H.: From visual data exploration to visual data mining: a survey. IEEE Trans. Visual Comput. Graphics 9(3), 378–394 (2003)

    Article  Google Scholar 

  36. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI, pp. 1895–1901 (2016)

    Google Scholar 

  37. Le, T.M.V., Lauw, H.W.: Probabilistic latent document network embedding. In: ICDM, pp. 270–279 (2014)

    Google Scholar 

  38. Maaten, L.V.D., Hinton, G.: Visualizing data using t-Sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  39. Ester, M., Kriegel, H., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  40. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 274–285. SIAM (2005)

    Google Scholar 

  41. Wang, C., Feng, Y., Li, T., et al.: A new encryption-then-compression scheme on gray images using the markov random field. Comput. Mater. Continua 56(1), 107–121 (2018)

    Google Scholar 

  42. Chen, Y., Yin, B., He, H., et al.: Reversible data hiding in classification-scrambling encrypted-image based on iterative recovery. CMC Comput. Mater. Continua 56(2), 299–312 (2018)

    Google Scholar 

Download references

Acknowledgement

This research was funded in part by the National Natural Science Foundation of China (61871140, 61872100, 61572153, U1636215), the National Key research and Development Plan (Grant No. 2018YFB0803504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Qiu or Le Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Lu, H., Qiu, J., Wang, L. (2019). A Tutorial of Graph Representation. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11632. Springer, Cham. https://doi.org/10.1007/978-3-030-24274-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24274-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24273-2

  • Online ISBN: 978-3-030-24274-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics