Skip to main content

A New Quantum Private Query Protocol with Better Performance in Resisting Joint-Measurement Attack

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11635))

Included in the following conference series:

  • 2140 Accesses

Abstract

Quantum private query (QPQ) as a kind of protocol with strong practicability, its research depth is deepening. However, joint measurement (JM) attack poses a threat to the security of databases in protocol. Specifically, a malicious user can illegally obtain entries more than the average number of honest users from the database. Taking Jakobi et al.’s protocol as an example, a malicious user can obtain up to 500 bits from a database of 104 bits in one query instead of the expected 2.44 bits. In order to prevent JM attack, we design a new quantum private query protocol which has the similar procedure of raw oblivious key generation with Wei Chunyan et al.’s and Jakobi et al.’s. In our protocol, we add a step that Alice has to send back the measured qubits after some operation which ensures she must measure honestly. Therefore, our protocol can protect database security in theoretically, and the protocol can also improve the communication transmission distance because the photons Alice returns to Bob is re-prepared by her. Moreover, our protocol keeps the good peculiarities of QKD-based QPQs, e.g., its loss tolerant and robust against quantum memory attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gentner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60, 592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, p. 124. IEEE, Piscataway (1994)

    Google Scholar 

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, p. 212. ACM, New York (1996)

    Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  MATH  Google Scholar 

  6. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis. IEEE Trans. Inf. Theory 56, 3465 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)

    Article  Google Scholar 

  9. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)

    Article  Google Scholar 

  10. Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87, 012331 (2013)

    Article  Google Scholar 

  11. Zhang, J.L., Guo, F.Z., Gao, F., Liu, B., Wen, Q.Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)

    Article  Google Scholar 

  12. Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  Google Scholar 

  13. Chan, P., Lucio-Martinez, I., Mo, X., Simon, C., Tittel, W.: Performing private database queries in a real-world environment using a quantum protocol. Sci. Rep. 4, 5233 (2014)

    Article  Google Scholar 

  14. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  15. Liu, B., Gao, F., Huang, W.: QKD-based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  16. Jakobi, M., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  Google Scholar 

  17. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  Google Scholar 

  18. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)

    Google Scholar 

  19. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154 (1997)

    Article  Google Scholar 

  20. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  Google Scholar 

  21. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: On the information-splitting essence of two types of quantum key distribution protocols. Phys. Lett. A 355, 172–175 (2006)

    Article  MATH  Google Scholar 

  22. Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284(1), 536–540 (2011)

    Article  Google Scholar 

  23. Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13(9–10), 861–879 (2013)

    Google Scholar 

  24. Liu, B., et al.: Choice of measurement as the secret. Phys. Rev. A 89(4), 042318-1–042318-7 (2014)

    Google Scholar 

  25. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  Google Scholar 

  26. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  Google Scholar 

  27. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  Google Scholar 

  28. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  Google Scholar 

  30. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69(5), 052307-1–052307-5 (2004)

    Article  Google Scholar 

  31. Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501-1–030501-5 (2016)

    Article  Google Scholar 

  32. Xiang, Y., et al.: Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications. Phys. Rev. A 95, 1–6 (2017)

    Article  Google Scholar 

  33. Kogias, I., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315-1–012315-6 (2017)

    Article  Google Scholar 

  34. Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)

    Article  Google Scholar 

  35. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902-1–187902-4 (2002)

    Article  Google Scholar 

  36. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greeberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  Google Scholar 

  37. Huang, W., et al.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308-1–100308-9 (2012)

    Google Scholar 

  38. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  Google Scholar 

  39. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  Google Scholar 

  40. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Rev. Lett. 358(4), 256–258 (2006)

    Article  MATH  Google Scholar 

  41. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)

    Article  Google Scholar 

  42. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  Google Scholar 

  43. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  MathSciNet  Google Scholar 

  44. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  Google Scholar 

  45. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  Google Scholar 

  46. Lee, H.Y., Hong, C.H., Kim, H.S., Lim, J.G., Yang, H.Y.: Arbitrated quantum signature scheme with message recovery. Phys. Rev. Lett. 321(5–6), 295–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  Google Scholar 

  48. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  Google Scholar 

  49. Tang, X., Chen, Z., Zhang, H., Liu, X., Shi, Y., Shahzadi, A.: An optimized labeling scheme for reachability queries. CMC: Comput. Mater. Continua 055(2), 267–283 (2018)

    Google Scholar 

  50. Zhang, X., Wang, P., Sun, W., Badler, N.I.: A novel twist deformation model of soft tissue in surgery simulation. CMC: Comput. Mater. Continua 55(2), 297–319 (2018)

    Google Scholar 

Download references

Acknowledgments

This paper is supported by Development of quantum cryptography equipment and terminal modules for distribution of electricity business (536800170042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X. et al. (2019). A New Quantum Private Query Protocol with Better Performance in Resisting Joint-Measurement Attack. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11635. Springer, Cham. https://doi.org/10.1007/978-3-030-24268-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24268-8_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24267-1

  • Online ISBN: 978-3-030-24268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics