Newtonian Fluids

Part of the Texts in Applied Mathematics book series (TAM, volume 56)


The equations of motion for an incompressible Newtonian fluid are given in Sect.  8.11.1.


  1. H. Bhatia, G. Norgard, V. Pascucci, and P.T. Bremer, The Helmholtz-Hodge decomposition - a survey. IEEE Trans. Vis. Comput. Graph. 19 (8), 1386–1404 (2013). ISSN 1077-2626CrossRefGoogle Scholar
  2. L. Cavaleri, J.-H.G.M. Alves, F. Ardhuin, A. Babanin, M. Banner, K. Belibassakis, M. Benoit, M. Donelan, J. Groeneweg, T.H.C. Herbers, P. Hwang, P.A.E.M. Janssen, T. Janssen, I.V. Lavrenov, R. Magne, J. Monbaliu, M. Onorato, V. Polnikov, D. Resio, W.E. Rogers, A. Sheremet, J. McKee Smith, H.L. Tolman, G. van Vledder, J. Wolf, I. Young, Wave modelling - the state of the art. Prog. Oceanogr. 75 (4), 603–674 (2007). ISSN 0079-6611
  3. T. Cebeci, J. Cousteix, Modeling and Computation of Boundary-layer Flows, 2nd edn. (Springer, New York, 2005)zbMATHGoogle Scholar
  4. R.C.V. Coelho, M. Mendoza, M.M. Doria, H.J. Herrmann, Kelvin-Helmholtz instability of the Dirac fluid of charge carriers on graphene. Phys Rev B 96, 184307 (2017).
  5. P.G. Drazin, W.H. Reid, Hydrodynamic Stability, 2nd edn. (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  6. B. Eckhardt, T.M. Schneider, B. Hof, J. Westerweel, Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007)MathSciNetCrossRefGoogle Scholar
  7. J. Ellenberger, P.J. Klijn, M. Tels, J. Vleggaar, Construction and performance of a cone-and-plate rheogoniometer with air bearings. J. Phys. E Sci. Instrum. 9, 763–765 (1976)CrossRefGoogle Scholar
  8. G. Eyink, U. Frisch, R. Moreau, A. Sobolevski, Euler equations: 250 years on, proceedings of an international conference. Physica D 237 (14–17), 1825–2250 (2008)MathSciNetzbMATHGoogle Scholar
  9. R.D. Gregory, Helmholtz’s theorem when the domain is infinite and when the field has singular points. Q. J. Mech. Appl. Math. 49, 439–450 (1996)MathSciNetCrossRefGoogle Scholar
  10. M.H. Holmes, Introduction to Numerical Methods in Differential Equations. Texts in Applied Mathematics, vol. 52 (Springer, New York, 2005)Google Scholar
  11. P. Iskyan, Cloud formation over Breckenridge, Colorado (2019), Accessed 10 Jan 2019
  12. D.D. Joseph, Potential flow of viscous fluids: Historical notes. Int. J. Multiphase Flow 32, 285–310 (2006)CrossRefGoogle Scholar
  13. S. Kavosi, Kelvin-Helmholtz Instability at Earth’s magnetopause: THEMIS Observations and OpenGGCM Simulations, PhD thesis, University of New Hampshire (2015)Google Scholar
  14. C. Kunkle, Velocity field in a pipe, in Millersville University Physics: Experiment of the Month (2008).
  15. H.G. Lee, J. Kim, Two-dimensional Kelvin–Helmholtz instabilities of multi-component fluids. Eur. J. Mech. B Fluids 49, 77–88 (2015). ISSN 0997-7546
  16. Y.K. Leong, Y.L. Yeow, Obtaining the shear stress shear rate relationship and yield stress of liquid foods from couette viscometry data. Rheol. Acta 42, 365–371 (2003)CrossRefGoogle Scholar
  17. B.W. Levin, M.A. Nosov, Physics of Tsunamis (Springer, New York, 2016)CrossRefGoogle Scholar
  18. S. Morris, Boeing 777-236/ER aircraft, in AirTeamImages (2006)Google Scholar
  19. T. Mullin, Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech. 43 (1), 1–24 (2011). MathSciNetCrossRefGoogle Scholar
  20. A. Paquier, F. Moisy, M. Rabaud, Viscosity effects in wind wave generation. Phys. Rev. Fluids 1, 083901 (2016).
  21. Y.M. Shtemler, M. Mond, V. Cherniavskii, E. Golbraikh, Y. Nissim, An asymptotic model for the Kelvin–Helmholtz and Miles mechanisms of water wave generation by wind. Phys. Fluids 20 (9), 094106 (2008).
  22. S. Taneda, Oscillation of the wake behind a flat plate parallel to the flow. J. Phys. Soc. Jpn. 13 (4), 418–425 (1958). CrossRefGoogle Scholar
  23. S.A. Thorpe, A method of producing a shear flow in a stratified fluid. J. Fluid Mech. 32 (4), 693–704 (1968). CrossRefGoogle Scholar
  24. N. Tillmark, P.H. Alfredsson, Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89–102 (1992)CrossRefGoogle Scholar
  25. H. van Haren, L. Gostiaux, E. Morozov, R. Tarakanov, Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophys. Res. Lett. 41 (23), 8445–8451 (2014). ISSN 1944-8007CrossRefGoogle Scholar
  26. H.F. Weinberger, A First Course in Partial Differential Equations: with Complex Variables and Transform Methods (Dover, New York, 1995)Google Scholar
  27. A.P. Willis, J. Peixinho, R.R. Kerswell, T. Mullin, Experimental and theoretical progress in pipe flow transition. Philos. Trans. A Math. Phys. Eng. Sci. 366 (1876), 2671– 2684 (2008). ISSN 1364-503X
  28. N. Zahibo, E. Pelinovsky, T. Talipova, A. Kozelkov, A. Kurkin, Analytical and numerical study of nonlinear effects at tsunami modeling. Appl. Math. Comput. 174 (2), 795–809 (2006). ISSN 0096-3003

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations