Part of the Texts in Applied Mathematics book series (TAM, volume 56)


In the last chapter we examined how to use the kinetics of reactions to model the rate of change of populations, or concentrations. We did not consider the consequences of the motion or spatial transport of these populations. There are multiple mechanisms involved with transport, and in this chapter we will examine one of them, and it is the process of diffusion. A simple example of diffusion arises when a perfume bottle is opened. Assuming the air is still, the perfume molecules move through the air because of molecular diffusion.


  1. G.L. Aranovich, M.D. Donohue, Eliminating the mean-free-path inconsistency in classical phenomenological model of diffusion for fluids. Physica A 373, 119–141 (2007)CrossRefGoogle Scholar
  2. J.S. Bader, R.W. Hammond, S.A. Henck, M.W. Deem, G.A. McDermott, J.M. Bustillo, J.W. Simpson, G.T. Mulhern, J.M. Rothberg, DNA transport by a micromachined Brownian ratchet device. Proc. Natl. Acad. Sci. 96, 13165–13169 (1999)CrossRefGoogle Scholar
  3. R.W. Balluffi, S.M. Allen, W.C. Carter, Kinetics of Materials (Wiley, New York, 2005)CrossRefGoogle Scholar
  4. J. Bang, R. Pan, T.M. Hoang, J. Ahn, C. Jarzynski, H.T. Quan, T. Li, Experimental realization of Feynman’s ratchet. N. J. Phys. 20 (10), 103032 (2018), CrossRefGoogle Scholar
  5. J. Blum, S. Bruns, D. Rademacher, A. Voss, B. Willenberg, M. Krause, Measurement of the translational and rotational brownian motion of individual particles in a rarefied gas. Phys. Rev. Lett. 97, 230601 (2006)CrossRefGoogle Scholar
  6. C. Booth, T. Beer, J.D. Penrose, Diffusion of salt in tap water. Am. J. Phys. 46, 525–527 (1978)CrossRefGoogle Scholar
  7. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. 1, 2nd edn. (Addison Wesley, Reading, 2005)Google Scholar
  8. A. Fick, On liquid diffusion. Philos. Mag. 10, 31–39 (1885)Google Scholar
  9. A. Friedman, Generalized Functions and Partial Differential Equations (Dover, New York, 2005)zbMATHGoogle Scholar
  10. P. Gray, S.K. Scott, Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. (Oxford University Press, Oxford, 1994)Google Scholar
  11. P. Hänggi, F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009). CrossRefGoogle Scholar
  12. P.M. Hoffmann, How molecular motors extract order from chaos (a key issues review). Rep. Prog. Phys. 79 (3), 032601 (2016). CrossRefGoogle Scholar
  13. M. Holmes, Asymmetric random walks and drift-diffusion. Europhys. Lett. 102 (3), 30005 (2013a). CrossRefGoogle Scholar
  14. M.H. Holmes, V.C. Mow, W.M. Lai, The nonlinear interaction of solid and fluid in the creep response of articular cartilage. Biorheology 20, 422 (1983)Google Scholar
  15. U. Irion, A.P. Singh, C. Nusslein-Volhard, The developmental genetics of vertebrate color pattern formation: Lessons from zebrafish, in Essays on Developmental Biology, Part B, ed. by P.M. Wassarman. Current Topics in Developmental Biology, vol. 117 (Academic, New York, 2016), pp. 141–169. Google Scholar
  16. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North-Holland, Amsterdam, 2007)zbMATHGoogle Scholar
  17. J.B. Keller, Diffusion at finite speed and random walks. Proc. Natl. Acad. Sci. 101, 1120–1122 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. B. Lau, O. Kedem, J. Schwabacher, D. Kwasnieski, E.A. Weiss, An introduction to ratchets in chemistry and biology. Mater. Horiz. 4, 310–318 (2017). CrossRefGoogle Scholar
  19. D.S. Lemons, A. Gythiel, Paul Langevin’s 1908 paper, ‘on the theory of Brownian motion’. Am. J. Phys. 65, 1079–1081 (1997)CrossRefGoogle Scholar
  20. K. Lucas, Molecular Models for Fluids (Cambridge University Press, Cambridge, 2007)CrossRefGoogle Scholar
  21. R.M. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applications (Oxford University Press, Oxford, 2002)zbMATHGoogle Scholar
  22. H. Meinhardt, Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus 2 (4), 407–416 (2012). ISSN 2042-8898CrossRefGoogle Scholar
  23. S.G. Mikhlin, Mathematical Physics, an Advanced Course (North-Holland, Amsterdam, 1970)zbMATHGoogle Scholar
  24. D. Shaw, Diffusion in Semiconductors, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper, Chapter 6 (Springer, New York, 2017), pp. 133–149Google Scholar
  25. M.J. Skaug, C. Schwemmer, S. Fringes, C.D. Rawlings, A.W. Knoll, Nanofluidic rocking Brownian motors. Science 359 (6383), 1505–1508 (2018). ISSN 0036-8075CrossRefGoogle Scholar
  26. H.A. Tahini, A. Chroneos, S.C. Middleburgh, U. Schwingenschlogl, R.W. Grimes, Ultrafast palladium diffusion in germanium. J. Mater. Chem. A 3, 3832–3838 (2015). CrossRefGoogle Scholar
  27. A. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  28. M. Watanabe, S. Kondo, Is pigment patterning in fish skin determined by the Turing mechanism? Trends Genet. 31 (2), 88–96 (2015). ISSN 0168-9525CrossRefGoogle Scholar
  29. H.F. Weinberger, A First Course in Partial Differential Equations: with Complex Variables and Transform Methods (Dover, New York, 1995)Google Scholar
  30. S.-H. Wu, N. Huang, E. Jaquay, M.L. Povinelli, Near-field, on-chip optical Brownian ratchets. Nano Lett. 16 (8), 5261–5266 (2016) PMID: 27403605CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations