Skip to main content

Imaging

  • Chapter
  • First Online:
Book cover Post-Intensive Care Syndrome

Abstract

Imaging methods are widely known and used in medical care as well as in ICU patients. However, they are less known for their potential to assess and monitor nutritional status and specifically muscle mass. A variety of imaging methods is available, with typical differences in accuracy, availability, costs, expertise, limitations, and time. Widely used imaging methods in the ICU are the computed tomography (CT) scan and ultrasound (US); less used are bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). Choices have to be made according to the goals and within the limits of the hospital or care facility. Benefits of the CT scans may be convenient because patients are scanned for diagnostic reasons anyway and they provide an accurate assessment of muscle mass. US may be the most interesting monitoring tool for the intensivist or treating physician due to its availability and ease of use at the bedside. However, also BIA and DXA have a role in this field, providing different interesting new features for assessment and monitoring physical condition and nutritional status of the post-intensive care patient. Assessments from different methods cannot automatically be compared longitudinally; therefore, good cooperation in post-intensive care is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Vugt JL, Levolger S, Gharbharan A, Koek M, Niessen WJ, Burger JW, et al. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J Cachexia Sarcopenia Muscle. 2017;8:285–97.

    Article  PubMed  Google Scholar 

  2. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985). 1998;85:115–22.

    Article  CAS  Google Scholar 

  3. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol (1985). 2004;97:2333–8.

    Article  Google Scholar 

  4. Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17:527–58.

    Article  CAS  PubMed  Google Scholar 

  5. Aubrey J, Esfandiari N, Baracos VE, Buteau FA, Frenette J, Putman CT, et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol (Oxf). 2014;210:489–97.

    Article  CAS  Google Scholar 

  6. Puthucheary ZA, Phadke R, Rawal J, McPhail MJ, Sidhu PS, Rowlerson A, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43:1603–11.

    Article  PubMed  Google Scholar 

  7. Popuri K, Cobzas D, Esfandiari N, Baracos V, Jagersand M. Body composition assessment in axial CT images using FEM-based automatic segmentation of skeletal muscle. IEEE Trans Med Imaging. 2016;35:512–20.

    Article  PubMed  Google Scholar 

  8. Moisey LL, Mourtzakis M, Cotton BA, Premji T, Heyland DK, Wade CE, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013;17:R206.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weijs PJ, Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18:R12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Twisk JW, Oudemans-van Straaten HM, et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit Care. 2016;20:386.

    Article  PubMed  PubMed Central  Google Scholar 

  11. van der Werf A, Dekker IM, Meijerink MR, Wierdsma NJ. de van der Schueren MAE, Langius JAE. Skeletal muscle analyses: agreement between non-contrast and contrast CT scan measurements of skeletal muscle area and mean muscle attenuation. Clin Physiol Funct Imaging. 2018;38(3):366–72.

    Article  PubMed  Google Scholar 

  12. McNelly AS, Rawal J, Shrikrishna D, Hopkinson NS, Moxham J, Harridge SD, Hart N, Montgomery HE, Puthucheary ZA. An exploratory study of long-term outcome measures in critical illness survivors: construct validity of physical activity, frailty, and health-related quality of life measures. Crit Care Med. 2016;44(6):e362–9.

    Article  PubMed  Google Scholar 

  13. Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348(8):683–93.

    Article  PubMed  Google Scholar 

  14. Puthucheary ZA, Phadke R, Rawal J, McPhail MJ, Sidhu PS, Rowlerson A, Moxham J, Harridge S, Hart N, Montgomery HE. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43(8):1603–11.

    Article  PubMed  Google Scholar 

  15. Puthucheary Z, Montgomery H, Moxham J, Harridge S, Hart N. Structure to function: muscle failure in critically ill patients. J Physiol. 2010;588(23):4641–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hill JC, Millan IS. Validation of musculoskeletal ultrasound to assess and quantify muscle glycogen content. A novel approach. Phys Sportsmed. 2014;42(3):45–52.

    Article  PubMed  Google Scholar 

  17. Selva Raj I, Bird SR, Shield AJ. Ultrasound measurements of skeletal muscle architecture are associated with strength and functional capacity in older adults. Ultrasound Med Biol. 2017;43(3):586–94.

    Article  PubMed  Google Scholar 

  18. Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, Annoni R, Puthucheary Z, Gordon IR, Morris PE, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015;30(5):1151 e1159–14.

    Article  Google Scholar 

  19. Mourtzakis M, Parry S, Connolly B, Puthucheary Z. Skeletal muscle ultrasound in critical care: a tool in need of translation. Ann Am Thorac Soc. 2017;14(10):1495–503.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.

    Article  CAS  PubMed  Google Scholar 

  21. Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591(18):4405–13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Knuiman P, Hopman MT, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab (Lond). 2015;12:59.

    Article  Google Scholar 

  23. Ortenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(Pt 3):711–25.

    Article  PubMed  Google Scholar 

  24. Black CSM, Grocott M. The oxygen cost of rehabilitation in mechanically ventilated patients. Am J Respir Crit Care Med. 2017;195:A2742.

    Google Scholar 

  25. Bear DE, Parry SM, Puthucheary ZA. Can the critically ill patient generate sufficient energy to facilitate exercise in the ICU? Curr Opin Clin Nutr Metab Care. 2018;21(2):110–5.

    Article  PubMed  Google Scholar 

  26. Molinger J, van der Hoven B, Gommers D. Non-invasive assessment of muscle histology during sepsis; a feasibility study in recognition of muscle wasting patterns. Poster presentation 17Th congress of European shock society. Paris; 13 Sept 2017.

    Google Scholar 

  27. Wischmeyer PE, Puthucheary Z, San Millan I, Butz D, Grocott MPW. Muscle mass and physical recovery in ICU: innovations for targeting of nutrition and exercise. Curr Opin Crit Care. 2017;23(4):269–78.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care. 2015;19(Suppl 3):S6.

    PubMed  PubMed Central  Google Scholar 

  29. Olsson KE, Saltin B. Variation in total body water with muscle glycogen changes in man. Acta Physiol Scand. 1970;80(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  30. Fernández-Elías V. Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans. Eur J Appl Physiol. 2015;115:1919–26.

    Article  PubMed  Google Scholar 

  31. Nieman DC, Shanely RA, Zwetsloot KA, Meaney MP, Farris GE. Ultrasonic assessment of exercise-induced change in skeletal muscle glycogen content. BMC Sports Sci Med Rehabil. 2015;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hill JC, Millan IS. Validation of musculoskeletal ultrasound to assess and quantify muscle glycogen content. A novel approach. Phys Sportsmed. 2014;42(3):45–52.

    Article  PubMed  Google Scholar 

  33. Puthucheary Z. An update on muscle wasting in ICU. Signa Vitae. 2017;13(Suppl 3):30–1.

    Article  Google Scholar 

  34. Kuyumcu ME, Halil M, Kara Ö, Çuni B, Çağlayan G, Güven S, Yeşil Y, Arık G, Yavuz BB, Cankurtaran M, et al. Ultrasonographic evaluation of the calf muscle mass and architecture in elderly patients with and without sarcopenia. Arch Gerontol Geriatr. 2016;65:218–24.

    Article  PubMed  Google Scholar 

  35. Purslow PP. Muscle fascia and force transmission. J Bodyw Mov Ther. 2010;14(4):411–7.

    Article  PubMed  Google Scholar 

  36. Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol (1985). 2003;95(6):2229–34.

    Article  CAS  Google Scholar 

  37. Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647–66.

    Article  CAS  PubMed  Google Scholar 

  38. Lieber RL, Friden J. Clinical significance of skeletal muscle architecture. Clin Orthop Relat Res. 2001;383(383):140–51.

    Article  Google Scholar 

  39. Yu JY, Jeong JG, Lee BH. Evaluation of muscle damage using ultrasound imaging. J Phys Ther Sci. 2015;27(2):531–4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dieterich AV, Pickard CM, Deshon LE, Strauss GR, Gibson W, Davey P, McKay J. M-mode ultrasound used to detect the onset of deep muscle activity. J Electromyogr Kinesiol. 2015;25(2):224–31.

    Article  PubMed  Google Scholar 

  41. Lindberg F, Ohberg F, Brodin LA, Gronlund C. Assessment of intramuscular activation patterns using ultrasound M-mode strain. J Electromyogr Kinesiol. 2013;23(4):879–85.

    Article  CAS  PubMed  Google Scholar 

  42. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol Endocrinol Metab. 1996;271(6):E941–51.

    Article  CAS  Google Scholar 

  43. Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJ. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;101(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  44. Wang ZM, Visser M, Ma R, Baumgartner RN, Kotler D, Gallagher D, Heymsfield SB. Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol (1985). 1996;80(3):824–31.

    Article  CAS  Google Scholar 

  45. Thibault R, Makhlouf AM, Mulliez A, Cristina Gonzalez M, Kekstas G, Kozjek NR, Preiser JC, Rozalen IC, Dadet S, Krznaric Z, Kupczyk K, Tamion F, Cano N, Pichard C, Investigators PAP. Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study phase angle project. Intensive Care Med. 2016;42(9):1445–53.

    Article  PubMed  Google Scholar 

  46. Stapel S, Looijaard W, Dekker I, Girbes ARJ, Weijs P, Oudemans-van Straaten HM. Bioelectrical impedance analysis derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur J Clin Nutr. 2018;72(7):1019–25.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Di Somma S, Lukaski HC, Codognotto M, Peacock WF, Fiorini F, Aspromonte N, Ronco C, Santarelli S, Lalle I, Autunno A, Piccoli A. Consensus paper on the use of BIVA in medicine for the management of body hydration. Emerg Care J. 2011;7(4):6–14.

    Article  Google Scholar 

Download references

Conflict of Interest

PJMW has received funds from Baxter, Fresenius, Nestle, and Nutricia.

HMO has received research support from Fresenius, Nutricia, and Nestlé and speaker’s and advisory honorary from Fresenius, Nestlé, Nutricia, Baxter/Gambro, and Abbott.

SS had received research support from Nestlé and Astellas.

JM has received speaker’s and advisory honorary from MuscleSound, Nestlé, Nutricia, and Abbott.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. M. Weijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 European Society of Intensive Care Medicine

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weijs, P.J.M. et al. (2020). Imaging. In: Preiser, JC., Herridge, M., Azoulay, E. (eds) Post-Intensive Care Syndrome. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-030-24250-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24250-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24249-7

  • Online ISBN: 978-3-030-24250-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics