Skip to main content

Cardiac Contractility

  • Chapter
  • First Online:
Heart of the Matter

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

This chapter will equip you with an understanding of the determinants of cardiac contractility and the changes observed in these within the context of heart failure. We will begin by discussing the fundamentals of cardiac output, the effects of preload and afterload on ventricular function, and their clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent JL (2008) Understanding cardiac output. Crit Care 12(4):174

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumada M, Azuma T, Matsuda K (1967) The cardiac output-heart rate relationship under different conditions. Jpn J Physiol 17(5):538–555. [Internet] Available from: http://joi.jlc.jst.go.jp/JST.Journalarchive/jjphysiol1950/17.538?from=CrossRef

    Article  CAS  PubMed  Google Scholar 

  3. Wégria R, Frank CW, Wang H (1958) The effect of atrial and ventricular tachycardia on cardiac output, coronary blood flow and mean arterial pressure. Circ Res 6(5):624–632

    Article  PubMed  Google Scholar 

  4. Hamdani N, Kooij V, Van Dijk S, Merkus D, Paulus WJ, Dos RC et al (2008) Sarcomeric dysfunction in heart failure. Cardiovasc Res 77:649–658

    Article  CAS  PubMed  Google Scholar 

  5. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  6. Sun YB, Irving M (2010) The molecular basis of the steep force-calcium relation in heart muscle. J Mol Cell Cardiol 48:859–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiggers CJ (1951) Determinants of cardiac performance. Circulation 4(4):485–495

    Article  CAS  PubMed  Google Scholar 

  8. Levick JR (2009) An introduction to cardiovascular physiology, 5th edn. Hodder Arnold, London, pp 51–60

    Book  Google Scholar 

  9. Bers DM (1991) Excitation-contraction coupling and cardiac contractile force. Springer, Netherlands

    Google Scholar 

  10. Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840

    Article  CAS  PubMed  Google Scholar 

  11. de Tombe PP, ter Keurs HEDJ (2016) Cardiac muscle mechanics: sarcomere length matters. J Mol Cell Cardiol 91:148–150

    Article  PubMed  Google Scholar 

  12. Fuchs F, Smith SH (2001) Calcium, cross-bridges, and the Frank-Starling relationship. News Physiol Sci 16(1):5–10. [Internet] Available from: http://physiologyonline.physiology.org/content/16/1/5.abstract

    CAS  PubMed  Google Scholar 

  13. Solaro RJ (2007) Mechanisms of the Frank-Starling law of the heart: the beat goes on. Biophys J 93(12):4095–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farman GP, Gore D, Allen E, Schoenfelt K, Irving TC, De Tombe PP (2011) Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am J Physiol Heart Circ Physiol 300:2155–2160

    Article  Google Scholar 

  15. Sonneblick HE, Downing SE (1963) Afterload as a primary determinant of ventricular performance. Am J Physiol Heart Circ Physiol 204:604–610

    Google Scholar 

  16. Nozawa T, Cheng CP, Noda T, Little WC (1994) Relation between left ventricular oxygen consumption and pressure-volume area in conscious dogs. Circulation 89(2):810–817

    Article  CAS  PubMed  Google Scholar 

  17. Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Phys 240(1):H39–H44

    Article  CAS  Google Scholar 

  18. Solaro RJ (2011) Regulation of cardiac contractility [internet]. In: Colloquium series on integrated systems physiology: from molecule to function, vol 3, pp 1–50. Available from: http://www.ncbi.nlm.nih.gov/books/NBK54078/

    Google Scholar 

  19. Florea VG, Cohn JN (2014) The autonomic nervous system and heart failure. Circ Res 114:1815–1826

    Article  CAS  PubMed  Google Scholar 

  20. Katz AM (1988) Influence of altered inotropy and lusitropy on ventricular pressure-volume loops. J Am Coll Cardiol 11(2):438–445

    Article  CAS  PubMed  Google Scholar 

  21. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314

    Article  CAS  PubMed  Google Scholar 

  22. Ky B, French B, May Khan A, Plappert T, Wang A, Chirinos JA et al (2013) Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol 62:1165

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burkhoff D (2013) Pressure-volume loops in clinical research. J Am Coll Cardiol 62(13):1173–1176

    Article  PubMed  Google Scholar 

  24. Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128(4):388–400

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schotola H, Sossalla ST, Renner A, Gummert J, Danner BC, Schott P et al (2017) The contractile adaption to preload depends on the amount of afterload. ESC Hear Fail 4:468

    Article  Google Scholar 

  26. Machackova J, Barta J, Dhalla NS (2006) Myofibrillar remodelling in cardiac hypertrophy, heart failure and cardiomyopathies. Can J Cardiol 22:953

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S et al (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122(10):993–1003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN (2007) Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol 43:231–242

    Article  CAS  PubMed  Google Scholar 

  29. Ibrahim M, Al Masri A, Navaratnarajah M, Siedlecka U, Soppa GK, Moshkov A et al (2010) Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface. FASEB J 24(9):3321–3329. [Internet] Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.10-156638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ibrahim M, Kukadia P, Siedlecka U, Cartledge JE, Navaratnarajah M, Tokar S et al (2012) Cardiomyocyte Ca2+handling and structure is regulated by degree and duration of mechanical load variation. J Cell Mol Med 16(12):2910–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kishi T (2012) Heart failure as an autonomic nervous system dysfunction. J Cardiol 59:117–122

    Article  PubMed  Google Scholar 

  32. M. G. Hibberd, B. R. Jewell, (1982) Calcium- and length-dependent force production in rat ventricular muscle. The Journal of Physiology 329 (1):527-540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotios G. Pitoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitoulis, F.G., de Tombe, P.P. (2019). Cardiac Contractility. In: Terracciano, C., Guymer, S. (eds) Heart of the Matter. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24219-0_10

Download citation

Publish with us

Policies and ethics