Skip to main content

Towards Agent-Oriented Blockchains: Autonomous Smart Contracts

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11523)

Abstract

Features of blockchain technology (BCT) such as decentralisation, trust, fault tolerance, and accountability, are of paramount importance for multi-agent systems (MAS). In this paper we argue that a principled approach to MAS-BCT integration cannot overlook the foundational character of agency—that is, autonomy. Accordingly, we present a custom BCT implementation where autonomy is placed in smart contracts (SC) interpreted as software agents. We show how agency can enhance SC expressiveness with autonomy, situatedness, sociality, and intelligence, and highlight the limitations of state-of-art BCT in supporting MAS design and implementation.

Keywords

  • Autonomy
  • Smart contracts
  • Blockchain
  • Multi-agent systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-24209-1_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-24209-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    https://solidity.readthedocs.io/en/v0.5.3/introduction-to-smart-contracts.html, https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode4ade.html.

  2. 2.

    Source code publicly available at [12].

  3. 3.

    We rely on Prolog standard notation for input/output arguments: + is an input, + is an output, ? can be both, whereas @ is a ground input.

References

  1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: 13th EuroSys Conference (EuroSys 2018). ACM, New York (2018). https://doi.org/10.1145/3190508.3190538

  2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_8

    CrossRef  Google Scholar 

  3. BangBit Technologies: The power of smart contracts on the blockchain: how can businesses get the advantage? Medium, May 2018. http://medium.com/p/b8abd5086caf

  4. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. In: Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1994. LNCS, vol. 890, pp. 56–70. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58855-8_3

    CrossRef  Google Scholar 

  5. Ciatto, G., Calegari, R., Mariani, S., Denti, E., Omicini, A.: From the blockchain to logic programming and back: research perspectives. In: Cossentino, M., Sabatucci, L., Seidita, V. (eds.) WOA 2018–19th Workshop “From Objects to Agents”. CEUR Workshop Proceedings, vol. 2215, pp. 69–74 (2018)

    Google Scholar 

  6. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995). http://books.google.com/books?isbn=1857281861

  7. Denti, E., Omicini, A., Ricci, A.: tuProlog: a light-weight prolog for internet applications and infrastructures. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 184–198. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45241-9_13

    CrossRef  Google Scholar 

  8. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based smart contracts for blockchain systems. In: Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6_11

    CrossRef  Google Scholar 

  9. Kowalski, R.A.: Predicate logic as programming language. In: Information Processing 74 - Proceedings of the 1974 IFIP Congress, pp. 569–574. North-Holland Publishing Company (1974)

    Google Scholar 

  10. Kwon, J.: Tendermint: consensus without mining (2014). https://tendermint.com/static/docs/tendermint.pdf

  11. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: ACM SIGSAC Conference on Computer and Communications Security (CCS 2016), pp. 254–269. ACM Press, New York (2016). https://doi.org/10.1145/2976749.2978309

  12. Maffi, A.: Tenderfone GitLab repository. https://gitlab.com/pika-lab/blockchain/tenderfone/tenderfone-sc

  13. Odell, J.: Objects and agents compared. J. Object Technol. 1, 41–53 (2002). https://doi.org/10.5381/jot.2002.1.1.c4

    CrossRef  Google Scholar 

  14. Omicini, A., Ricci, A., Viroli, M.: Timed environment for Web agents. Web Intell. Agent Syst. 5(2), 161–175 (2007). http://content.iospress.com/articles/web-intelligence-and-agent-systems-an-international-journal/wia00111

    Google Scholar 

  15. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems. Auton. Agent. Multi-Agent Syst. 17(3), 432–456 (2008). https://doi.org/10.1007/s10458-008-9053-x

    CrossRef  Google Scholar 

  16. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR 1992), pp. 439–449. Morgan Kaufmann (1992)

    Google Scholar 

  17. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: towards a framework based on agents and artifacts. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71103-2_7

    CrossRef  Google Scholar 

  18. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990). https://doi.org/10.1145/98163.98167

    CrossRef  Google Scholar 

  19. Seijas, P.L., Thompson, S.J., McAdams, D.: Scripting smart contracts for distributed ledger technology. Report 1156, IACR Cryptology ePrint Archive (2016). http://eprint.iacr.org/2016/1156

  20. Stark, J.: Making sense of blockchain smart contracts. CoinDesk, June 2016. https://www.coindesk.com/making-sense-smart-contracts/

  21. Suchman, L.A.: Plans and Situated Actions: The Problem of Human-Machine Communication. Cambridge University Press, New York (1987)

    Google Scholar 

  22. Szabo, N.: Smart contracts (1994). http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

  23. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9) (1997). http://ojphi.org/ojs/index.php/fm/article/view/548/469

  24. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014). http://ethereum.github.io/yellowpaper/paper.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Omicini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ciatto, G., Maffi, A., Mariani, S., Omicini, A. (2019). Towards Agent-Oriented Blockchains: Autonomous Smart Contracts. In: Demazeau, Y., Matson, E., Corchado, J., De la Prieta, F. (eds) Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection. PAAMS 2019. Lecture Notes in Computer Science(), vol 11523. Springer, Cham. https://doi.org/10.1007/978-3-030-24209-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24209-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24208-4

  • Online ISBN: 978-3-030-24209-1

  • eBook Packages: Computer ScienceComputer Science (R0)