Skip to main content

Integrable Thermodynamics

  • Chapter
  • First Online:
Elements of Classical and Quantum Integrable Systems

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 1329 Accesses

Abstract

In this chapter we consider the thermodynamics of integrable models. We assume that these models have a phase shift that can be computed exactly or approximately. For models with no bound states, by applying the thermodynamic limit to the corresponding Bethe equations, we obtain equations for the ground state. We then consider the case of finite temperature and derive the Yang-Yang equation describing the state of thermodynamic equilibrium. Further, using the example of a one-dimensional electron gas with delta-function interaction, we formulate the so-called string hypothesis and derive the corresponding Thermodynamic Bethe Ansatz equations, both canonical and simplified. We also exhibit solutions of these equations at weak and strong coupling.

This is a very controversial point of the thermodynamic Bethe-ansatz equations for soluble models, except for the repulsive boson case, which has no string solutions. But equations obtained using the string hypothesis seem to give the correct free energy and other thermodynamic quantities.

Minoru Takahashi

Thermodynamics of one-dimensional solvable models

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For N even the ground state of a fermion system is doubly degenerate, see footnote 2 on Sect. 5.1.2.

  2. 2.

    As follows from the variational argument based on the Yang-Yang functional [2], this implies that solutions of (6.1) are uniquely parametrised by a set of quantum numbers \({\mathcal {I}}_j\), in accordance with our initial assumption.

  3. 3.

    These important properties of \(p(\eta )\) also follow from the variational principle, see [3].

  4. 4.

    In physical units this density has the dimension \(1/[\hbar ]\).

  5. 5.

    All physical parameters are in there, including the mass parameter \(\mu =mc\) (c is the speed of light), the length parameter \(\ell \) and the Planck constant \(\hbar \).

  6. 6.

    We warn the reader that we use for pressure the same notation as for the total momentum of a microscopic system.

  7. 7.

    This configuration is called p-\(\lambda \) string.

  8. 8.

    Including, for instance, integrable models arising in the context of the AdS/CFT correspondence [11,12,13], see [14, 15] for the reviews.

References

  1. Zamolodchikov, A.B.: Thermodynamic Bethe Ansatz in relativistic models. Scaling three state potts and Lee-yang models. Nucl. Phys. B 342, 695–720 (1990)

    Google Scholar 

  2. Yang, C.N., Yang, C.P.: Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction. J. Math. Phys. 10, 1115–1122 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  3. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge Monographs on Mathematical Physics, Cambridge University Press (1997)

    Google Scholar 

  4. Gaudin, M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A 4, 386–394 (1971)

    Article  ADS  Google Scholar 

  5. Sutherland, B.: Quantum many body problem in one-dimension. J. Math. Phys. 12, 251–256 (1971)

    Article  ADS  Google Scholar 

  6. Takahashi, M.: One-dimensional electron gas with delta-function interaction at finite temperature. Prog. Theor. Phys. 46, 1388–1406 (1971)

    Article  ADS  Google Scholar 

  7. Lai, C.K.: Thermodynamics of fermions in one dimension with a \(\delta \)-function interaction. Phys. Rev. Lett. 26, 1472–1475 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  8. Lai, C.K.: Thermodynamics of a one-dimensions system of fermions with a repulsive \(\delta \)-function interaction. Phys. Rev. A 8, 2567–2573 (1973)

    Article  ADS  Google Scholar 

  9. Takahashi, M.: Thermodynamics of One-Dimensional Solvable Models. Cambridge University Press (1999)

    Google Scholar 

  10. Essler, F.H.L., Frahm, H., Göhmann, F., Klümper, A., Korepin, V.E.: The One-Dimensional Hubbard Model. Cambridge University Press (2005)

    Google Scholar 

  11. Arutyunov, G., Frolov, S.: String hypothesis for the \({\rm AdS}_5\times {\rm S}^5\) mirror. JHEP 03, 152 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Arutyunov, G., Frolov, S.: Thermodynamic Bethe Ansatz for the \({\rm AdS}_5\times {\rm S}^5\) mirror model. JHEP 05, 068 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Arutyunov, G., de Leeuw, M., van Tongeren, S.J.: The quantum deformed mirror TBA I. JHEP 10, 090 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. Arutyunov, G., Frolov, S.: Foundations of the \({\rm AdS}_5\times {\rm S}^5\) superstring. Part I. J. Phys. A 42, 254003 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Beisert, N., et al.: Review of AdS/CFT integrability: an overview. Lett. Math. Phys. 99, 3–32 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yang, C.N.: Some exact results for the many body problems in one dimension with repulsive delta function interaction. Phys. Rev. Lett. 19, 1312–1314 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  17. Å amaj, L., Bajnok, Z.: Introduction to the statistical physics of integrable many-body systems. Cambridge University Press (2013)

    Google Scholar 

  18. Landau, L.D., Lifshitz, E.M., Pitaevskij, L.P.: Statistical Physics, (Course of Theoretical Physics), 2 edn., vol. 5. Oxford (1980)

    Google Scholar 

  19. Kuniba, A., Nakanishi, T., Suzuki, J.: T-systems and Y-systems in integrable systems. J. Phys. A 44, 103001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. van Tongeren, S.J.: Introduction to the thermodynamic Bethe ansatz. J. Phys. A 49, 323005 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Arutyunov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arutyunov, G. (2019). Integrable Thermodynamics. In: Elements of Classical and Quantum Integrable Systems . UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24198-8_6

Download citation

Publish with us

Policies and ethics