Skip to main content

Pulsars and Pulsar Wind Nebulae

  • Chapter
  • First Online:
  • 325 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

When heavy stars have burned all their nuclear fuel, neutron degeneracy pressure is the last force able to halt their collapse into a black hole. The sudden stop of the free-fall collapse leads to a rebound of the infalling matter triggering an outward shock that blows up the star envelope and powers a Type II supernova. If the mass of the progenitor star does not exceed \(\sim \)20 solar masses [1], the compact remnant core evolves into a neutron star. Otherwise the amount of matter falling back on to the core crosses the maximum neutron star mass and ultimately collapses to form a black hole.

Unusual signals from pulsating radio sources have been recorded at the Mullard Radio Astronomy Observatory. The radiation seems to come from local objects within the galaxy, and may be associated with oscillations of white dwarf or neutron stars.

Hewish et al., 1968

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The radio lag refers to the phase lag between the first gamma-ray peak and the main radio peak (a definition of pulse phase can be found in Appendix B). For the computation of the radio lag, Kalapotharakos et al. [21] assumed that the radio emission originates from near the magnetic pole on the pulsar surface.

  2. 2.

    The pair production mechanism in their study is highly idealized and is limited to a pair multiplicity of 10. For details see [23].

  3. 3.

    https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars, last accessed 06/04/2018.

  4. 4.

    The exponential cut-off in a spectrum is described by the functional relation \(dN/dE \propto \mathrm {e}^{\left( -E/E_c\right) ^b}\), where \(E_c\) defines the cut-off energy. For a simple or pure cut-off, b equals 1, whereas \(b>1\) and \(b<1\) are denoted as super-exponential and sub-exponential cut-offs, respectively.

  5. 5.

    The radio lag refers to the phase lag between the first gamma-ray peak and the main radio peak.

  6. 6.

    Although a strong hint at the \(3.5\, \sigma \) level was reported for the msp psr j0218+4232 [47].

  7. 7.

    For an excellent assessment of the pulsar outer gap models, the reader is referred to [61].

  8. 8.

    For a comprehensive derivation of the formula, see Appendix B in [4].

  9. 9.

    Here the adjective “cold” means that the wind’s thermal energy is much smaller than its magnetic and bulk kinetic energy.

  10. 10.

    \(L_{\mathrm {1-10TeV}}\) denotes the luminosity integrated from 1 to 10 TeV.

References

  1. Fryer CL, New KCB (2011) Gravitational waves from gravitational collapse. Living Rev Relativ 14(1):1. https://doi.org/10.12942/lrr-2011-1

    Article  ADS  MATH  Google Scholar 

  2. Lattimer JM, Prakash M (2004) The physics of neutron stars. Science 304(5670):536–542. https://doi.org/10.1126/science.1090720

    Article  ADS  Google Scholar 

  3. Abdo AA et al (2013) The second fermi large area telescope catalog of gamma-ray pulsars. Astrophys J Suppl Ser 208(2):17. https://doi.org/10.1088/0067-0049/208/2/17

    Article  ADS  Google Scholar 

  4. Abdalla H et al (2018) The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey. Astron Astrophys 612:A2. https://doi.org/10.1051/0004-6361/201629377

    Article  Google Scholar 

  5. Chadwick J (1932) Possible existence of a neutron. Nature 129(3252):312–312. https://doi.org/10.1038/129312a0

    Article  ADS  Google Scholar 

  6. Baade W, Zwicky F (1934) Remarks on super-novae and cosmic rays. Phys Rev 46(1):76–77. https://doi.org/10.1103/PhysRev.46.76.2

    Article  ADS  Google Scholar 

  7. Hewish A et al (1968) Observation of a rapidly pulsating radio source. Nature 217(5130):709–713. https://doi.org/10.1038/217709a0

    Article  ADS  Google Scholar 

  8. Page D, Reddy S (2006) Dense matter in compact stars: theoretical developments and observational constraints. Annu Rev Nucl Part Sci 56(1):327–374. https://doi.org/10.1146/annurev.nucl.56.080805.140600

    Article  ADS  Google Scholar 

  9. Harding AK (2013) The neutron star zoo. Front Phys 8(6):679–692. https://doi.org/10.1007/s11467-013-0285-0

    Article  Google Scholar 

  10. Archibald AM et al (2009) A radio pulsar/X-ray binary link. Science 324(5933):1411–1414. https://doi.org/10.1126/science.1172740

    Article  ADS  Google Scholar 

  11. Papitto A et al (2013) Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501(7468):517–520. https://doi.org/10.1038/nature12470

    Article  ADS  Google Scholar 

  12. Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys J 157:869. https://doi.org/10.1086/150119

    Article  ADS  Google Scholar 

  13. Timokhin AN (2006) On the force-free magnetosphere of an aligned rotator. Mon Not R Astron Soc 368(3):1055–1072. https://doi.org/10.1111/j.1365-2966.2006.10192.x

    Article  ADS  Google Scholar 

  14. Michel FC (1973) Rotating magnetospheres: an exact 3-D solution. Astrophys J 180:L133. https://doi.org/10.1086/181169

    Article  ADS  Google Scholar 

  15. Scharlemann ET, Wagoner RV (1973) Aligned rotating magnetospheres. General analysis. Astrophys J 182:951. https://doi.org/10.1086/152195

    Article  ADS  Google Scholar 

  16. Contopoulos I et al (1999) The axisymmetric pulsar magnetosphere. Astrophys J 511(1):351–358. https://doi.org/10.1086/306652

    Article  ADS  Google Scholar 

  17. Spitkovsky A (2006) Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys J 648(1):L51–L54. https://doi.org/10.1086/507518

    Article  ADS  Google Scholar 

  18. Gruzinov A (2007) Pulsar emission and force-free electrodynamics. Astrophys J 667(1):L69–L71. https://doi.org/10.1086/519839

    Article  ADS  Google Scholar 

  19. Li J et al (2012) Resisitive solutions for pulsar magnetospheres. Astrophys J 746(1):60. https://doi.org/10.1088/0004-637X/746/1/60

    Article  ADS  Google Scholar 

  20. Kalapotharakos C et al (2012) Toward a realistic pulsar magnetosphere. Astrophys J 749(1):2. https://doi.org/10.1088/0004-637X/749/1/2

    Article  ADS  Google Scholar 

  21. Kalapotharakos C et al (2014) Gamma-ray emission in dissipative pulsar magnetospheres: from theory to fermi observations. Astrophys J 793(2):97. https://doi.org/10.1088/0004-637X/793/2/97

    Article  ADS  Google Scholar 

  22. Brambilla G et al (2015) Testing dissipative magnetosphere model light curves and spectra with Fermi pulsars. Astrophys J 804(2):84. https://doi.org/10.1088/0004-637X/804/2/84

    Article  ADS  Google Scholar 

  23. Philippov AA et al (2015) Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys J 801(1):L19. https://doi.org/10.1088/2041-8205/801/1/L19

    Article  ADS  Google Scholar 

  24. Manchester RN et al (2005) The Australia telescope national facility pulsar catalogue. Astron J 129(4):1993–2006. https://doi.org/10.1086/428488

    Article  ADS  Google Scholar 

  25. Michel F, Li H (1999) Electrodynamics of neutron stars. Phys Rep 318(6):227–297. https://doi.org/10.1016/S0370-1573(99)00002-2

    Article  ADS  Google Scholar 

  26. Shapiro SL, Teukolsky SA (1983) Black holes. The physics of compact objects. Wiley-VCH, White Dwarfs and Neutron Stars. ISBN 0471873160

    Google Scholar 

  27. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley. ISBN 047130932X

    Google Scholar 

  28. Gunn JE, Ostriker JP (1969) Magnetic dipole radiation from pulsars. Nature 221:454. https://doi.org/10.1038/221454a0

    Article  ADS  Google Scholar 

  29. Tong H, Kou FF (2017) Possible evolution of the pulsar braking index from larger than three to about one. Astrophys J 837(2):117. https://doi.org/10.3847/1538-4357/aa60c6

    Article  ADS  Google Scholar 

  30. de Araujo JC et al (2016) Gravitational wave emission by the high braking index pulsar PSR J1640–4631. J Cosmol Astropart Phys 2016(07):023. https://doi.org/10.1088/1475-7516/2016/07/023

    Article  Google Scholar 

  31. Mignani RP (2011) Optical, ultraviolet, and infrared observations of isolated neutron stars. Adv Space Res 47(8):1281–1293. https://doi.org/10.1016/j.asr.2009.12.011

    Article  ADS  Google Scholar 

  32. Mignani RP et al (2016) Observations of three young \(\gamma \)-ray pulsars with the Gran Telescopio Canarias. Mon Not R Astron Soc 461(4):4317–4328. https://doi.org/10.1093/mnras/stw1629

    Article  ADS  Google Scholar 

  33. Becker W (2009) Neutron stars and pulsars, vol 357 of Astrophysics and space science library. Springer, Berlin. https://doi.org/10.1007/978-3-540-76965-1. ISBN 978-3-540-76964-4

    Google Scholar 

  34. Ackermann M et al (2012) The Fermi large area telescope on orbit: event classification, instrument response functions, and calibration. Astrophys J Suppl Ser 203(1):4. https://doi.org/10.1088/0067-0049/203/1/4

    Article  ADS  Google Scholar 

  35. Thompson DJ (2004) Gamma ray pulsars. In: Cheng KS, Romero GE (eds) Cosmic gamma-ray sources. Kluwer Academic, Dordrecht, pp 149–168. https://doi.org/10.1007/978-1-4020-2256-2_7

    Chapter  Google Scholar 

  36. Thompson DJ (2008) Gamma ray astrophysics: the EGRET results. Rep Prog Phys 71(11):116901. https://doi.org/10.1088/0034-4885/71/11/116901

    Article  ADS  Google Scholar 

  37. Baring MG (2004) High-energy emission from pulsars: the polar cap scenario. Adv Space Res 33(4):552–560. https://doi.org/10.1016/j.asr.2003.08.020

    Article  ADS  Google Scholar 

  38. Lee KJ et al (2010) Low bounds for pulsar \(\gamma \)-ray radiation altitudes. Mon Not R Astron Soc 405(3):2103–2112. https://doi.org/10.1111/j.1365-2966.2010.16600.x

    Article  ADS  Google Scholar 

  39. Watters KP, Romani RW (2011) The galactic population of young \(\gamma \)-ray pulsars. Astrophys J 727(2):123. https://doi.org/10.1088/0004-637X/727/2/123

    Article  ADS  Google Scholar 

  40. Watters KP et al (2009) An atlas for interpreting \(\gamma \)-ray pulsar light curves. Astrophys J 695(2):1289–1301. https://doi.org/10.1088/0004-637X/695/2/1289

    Article  ADS  Google Scholar 

  41. Grenier IA, Harding AK (2006) Pulsar twinkling and relativity. In: AIP conference proceedings, p 9

    Google Scholar 

  42. Viganò D et al (2015) A systematic synchro-curvature modelling of pulsar \(\gamma \)-ray spectra unveils hidden trends. Mon Not R Astron Soc 453(3):2600–2622. https://doi.org/10.1093/mnras/stv1582

    Article  ADS  Google Scholar 

  43. Bochenek C, McCann A (2015) On the spectral shape of gamma-ray pulsars above the break energy. In: 34th international cosmic ray conference. The Hague, Netherlands

    Google Scholar 

  44. Ahnen ML et al (2016) Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes. Astron Astrophys 591:A138. https://doi.org/10.1051/0004-6361/201527722

    Article  Google Scholar 

  45. Abdo AA et al (2010c) The Vela pulsar: results from the first year of Fermi LAT observations. Astrophys J 713(1):154–165. https://doi.org/10.1088/0004-637X/713/1/154

    Article  ADS  Google Scholar 

  46. Takata J et al (2016) Probing gamma-ray emissions of Fermi -LAT pulsars with a non-stationary outer gap model. Mon Not R Astron Soc 455(4):4249–4266. https://doi.org/10.1093/mnras/stv2612

    Article  ADS  Google Scholar 

  47. Kuiper L et al (2000) The likely detection of pulsed high-energy \(\gamma \)-ray emission from millisecond pulsar PSR J0218+4232. Astron Astrophys 359:615–626

    ADS  Google Scholar 

  48. Harding AK et al (2002) Regimes of pulsar pair formation and particle energetics. Astrophys J 576(1):366–375. https://doi.org/10.1086/341633

    Article  ADS  Google Scholar 

  49. Harding AK et al (2005) High energy emission from millisecond pulsars. Astrophys J 622(1):531–543. https://doi.org/10.1086/427840

    Article  ADS  Google Scholar 

  50. Johnson TJ et al (2014) Constraints on the emission geometries and spin evolution of gamma-ray millisecond pulsars. Astrophys J Suppl Ser 213(1):6. https://doi.org/10.1088/0067-0049/213/1/6

    Article  ADS  Google Scholar 

  51. Harding AK, Kalapotharakos C (2015) Synchrotron self-compton emission from the Crab and other pulsars. Astrophys J 811(1):63. https://doi.org/10.1088/0004-637X/811/1/63

    Article  ADS  Google Scholar 

  52. Pétri J (2016) Theory of pulsar magnetosphere and wind. J Plasma Phys 82(05):635820502. https://doi.org/10.1017/S0022377816000763

    Article  Google Scholar 

  53. Sturrock PA (1971) A model of pulsars. Astrophys J 164:529. https://doi.org/10.1086/150865

    Article  ADS  Google Scholar 

  54. Ruderman MA, Sutherland PG (1975) Theory of pulsars—polar caps, sparks, and coherent microwave radiation. Astrophys J 196:51. https://doi.org/10.1086/153393

    Article  ADS  Google Scholar 

  55. Daugherty JK, Harding AK (1996) Gamma-ray pulsars: emission from extended polar CAP cascades. Astrophys J 458:278

    Article  ADS  Google Scholar 

  56. Arons J (1983) Pair creation above pulsar polar caps—geometrical structure and energetics of slot gaps. Astrophys J 266:215. https://doi.org/10.1086/160771

    Article  ADS  Google Scholar 

  57. Dyks J, Rudak B (2003) Two pole caustic model for high energy light curves of pulsars. Astrophys J 598(2):1201–1206. https://doi.org/10.1086/379052

    Article  ADS  Google Scholar 

  58. Cheng KS et al (1986) Energetic radiation from rapidly spinning pulsars. I-Outer magnetosphere gaps. II–VELA and Crab. Astrophys J 300:500. https://doi.org/10.1086/163829

    Article  ADS  Google Scholar 

  59. Romani RW (1996) Gamma-ray pulsars: radiation processes in the outer magnetosphere. Astrophys J 470:469. https://doi.org/10.1086/177878

    Article  ADS  Google Scholar 

  60. Hirotani K (2015) Three-dimensional non-vacuum pulsar outer-gap model: localized acceleration electric field in the higher altitudes. Astrophys J 798(2):L40. https://doi.org/10.1088/2041-8205/798/2/L40

    Article  ADS  Google Scholar 

  61. Vigano D et al (2015a) An assessment of the pulsar outer gap model—I. Assumptions, uncertainties, and implications on the gap size and the accelerating field. Mon Not R Astron Soc 447(3):2631–2648. https://doi.org/10.1093/mnras/stu2564

    Article  ADS  Google Scholar 

  62. Pétri J (2012) High-energy emission from the pulsar striped wind: a synchrotron model for gamma-ray pulsars. Mon Not R Astron Soc 424(3):2023–2027. https://doi.org/10.1111/j.1365-2966.2012.21350.x

    Article  ADS  Google Scholar 

  63. Arka I, Dubus G (2013) Pulsed high-energy \(\gamma \)-rays from thermal populations in the current sheets of pulsar winds. Astron Astrophys 550:A101. https://doi.org/10.1051/0004-6361/201220110

    Article  ADS  Google Scholar 

  64. Pierbattista M et al (2012) Constraining \(\gamma \)-ray pulsar gap models with a simulated pulsar population. Astron Astrophys 545:A42. https://doi.org/10.1051/0004-6361/201219135

    Article  Google Scholar 

  65. Arons J (2012) Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci Rev 173(1–4):341–367. https://doi.org/10.1007/s11214-012-9885-1

    Article  ADS  Google Scholar 

  66. Gaensler BM, Slane PO (2006) The evolution and structure of pulsar wind nebulae. Annu Rev Astron Astrophys 44(1):17–47. https://doi.org/10.1146/annurev.astro.44.051905.092528

    Article  ADS  Google Scholar 

  67. Aharonian F, Bogovalov S (2003) Exploring physics of rotation powered pulsars with sub-10 GeV imaging atmospheric Cherenkov telescopes. New Astron 8(2):85–103. https://doi.org/10.1016/S1384-1076(02)00200-2

    Article  ADS  Google Scholar 

  68. Porth O et al (2017) Modelling jets, tori and flares in pulsar wind nebulae. Space Sci Rev 207(1–4):137–174. https://doi.org/10.1007/s11214-017-0344-x

    Article  ADS  Google Scholar 

  69. Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154(1):1–75. https://doi.org/10.1016/0370-1573(87)90134-7

    Article  ADS  Google Scholar 

  70. Spitkovsky A (2008) Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys J 682(1):L5–L8. https://doi.org/10.1086/590248

    Article  ADS  Google Scholar 

  71. Sironi L, Spitkovsky A (2011) Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys J 741(1):39. https://doi.org/10.1088/0004-637X/741/1/39

    Article  ADS  Google Scholar 

  72. Kennel CF, Coroniti FV (1984) Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys J 283:694. https://doi.org/10.1086/162356

    Article  ADS  Google Scholar 

  73. Porth O et al (2014) Rayleigh-Taylor instability in magnetohydrodynamic simulations of the Crab nebula. Mon Not R Astron Soc 443(1):547–558. https://doi.org/10.1093/mnras/stu1082

    Article  ADS  Google Scholar 

  74. van der Swaluw E et al (2001) Pulsar wind nebulae in supernova remnants. Astron Astrophys 380(1):309–317. https://doi.org/10.1051/0004-6361:20011437

    Article  ADS  Google Scholar 

  75. Kargaltsev O et al (2013) Gamma-ray and X-ray properties of pulsar wind nebulae and unidentified Galactic TeV sources, p 16

    Google Scholar 

  76. Carrigan S et al (2007) Establishing a connection between high-power pulsars and very-high-energy gamma-ray sources. In: 30th international cosmic ray conference, Meirda, Mexico, pp 659–662

    Google Scholar 

  77. Aharonian F et al (2006) The H.E.S.S. survey of the inner galaxy in very high energy gamma rays. Astrophys J 636(2):777–797. https://doi.org/10.1086/498013

    Article  ADS  Google Scholar 

  78. Lorimer DR et al (2006) The Parkes Multibeam Pulsar Survey VI. Discovery and timing of 142 pulsars and a Galactic population analysis. Mon Not R Astron Soc 372:777–800. https://doi.org/10.1111/j.1365-2966.2006.10887.x

    Article  ADS  Google Scholar 

  79. Martín J et al (2012) Time-dependent modelling of pulsar wind nebulae: study on the impact of the diffusion-loss approximations. Mon Not R Astron Soc 427(1):415–427. https://doi.org/10.1111/j.1365-2966.2012.22014.x

    Article  ADS  Google Scholar 

  80. Torres D et al (2014) Time-dependent modeling of TeV-detected, young pulsar wind nebulae. J High Energy Astrophys 1–2:31–62. https://doi.org/10.1016/j.jheap.2014.02.001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Carreto Fidalgo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carreto Fidalgo, D. (2019). Pulsars and Pulsar Wind Nebulae. In: Revealing the Most Energetic Light from Pulsars and Their Nebulae. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24194-0_2

Download citation

Publish with us

Policies and ethics