Skip to main content

Mast Cell Ontogeny

  • Chapter
  • First Online:
The Mast Cell
  • 414 Accesses

Abstract

Paul Ehrlich firstly described mast cells in his doctoral thesis at the Medical Faculty of Leipzig University (Crivellato et al. 2003). Ehrlich recognized two types of mast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abonia JP, Austen KF, Rollins BJ et al (2005) Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR45. Blood 105:4308–4313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcaide P, Jones TG, Lord GM et al (2007) Dendritic cell expression of the transcription factor t-bet regulates mast cell progenitor homing to mucosal tissue. J Exp Med 204:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aloe L, Levi Montalcini R (1977) Mast cells increase in tissues of neonatal rats injected with the nerve growth factor. Brain Res 133:358–366

    Article  CAS  PubMed  Google Scholar 

  • Arinobu Y, Iwasaki H, Gurish MF et al (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 102:18105–18110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashman LK (1999) The biology of stem cell factor and its receptor C-Kit. Int J Biochem Cell Biol 31:1037–1051

    Article  CAS  PubMed  Google Scholar 

  • Babina M, SchülkeY Kirchhof L et al (2005) The transcription factor profile of human mast cells in comparison with monocytes and granulocytes. Cell Mol Life Sci 62:214–226

    Article  CAS  PubMed  Google Scholar 

  • Bellone G, Smime C, Carbone A et al (2006) KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and oucomes. Int J Oncol 29:851–859

    CAS  PubMed  Google Scholar 

  • Bischoff SC, Sellge G, Lorentz A et al (1999) IL-4 enhances proliferation and mediator release in mature human mast cells. Proc Natl Acad Sci 96:8080–8085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce JA (2002) Human mast cell progenitors use alpha 4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions. Blood 99:2890–2896

    Article  CAS  PubMed  Google Scholar 

  • Butterfield JH, Weiler D, Dewald G et al (1988) Establishment of an Immature Mast Cell Line from a Patient with Mast Cell Leukemia. Leuk Res 12:345–355

    Article  CAS  PubMed  Google Scholar 

  • Cantor AB, Iwasaki H, Arinobu Y et al (2008) Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J Exp Med 205:611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Grimbaldeston MA, Tsai M et al (2005) Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci USA 102: 11408–11413.

    Google Scholar 

  • Costa JJ, Demetri GD, Harrist TJ et al (1996) Recombinant human stem cell factor (kit ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo. J Exp Med 183:2681–2686

    Article  CAS  PubMed  Google Scholar 

  • Crapper RM, Schrader JW (1983) Frequency of mast cell precursors in normal tissues determined by an in vitro assay: antigen induces parallel increases in the frequency of P cell precursors and mast cells. J Immunol 131:923–928

    CAS  PubMed  Google Scholar 

  • Crivellato E, Beltrami C, Mallardi F et al (2003) Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 123:19–21

    Article  PubMed  Google Scholar 

  • Crivellato E, Nico B, Battistig M et al (2004) The thymus is a site of mast cell development in chicken embryos. Anat Embryol (Berl) 209:243–249

    Article  Google Scholar 

  • Ehrlich PLA (1898) Die Anemie, 1. Holder, Normale und Patologische Histologie des Blutes Wien

    Google Scholar 

  • Enerbäck L (1966a) Mast cells in rat gastrointestinal mucosa. I. effects of fixation. Acta Pathol Microbiol Scand 66:289–302

    Article  PubMed  Google Scholar 

  • Enerbäck L (1966b) Mast cells in rat gastrointestinal mucosa. 2. dye-binding and metachromatic properties. Acta Pathol Microbiol Scand 66:303–312

    Article  PubMed  Google Scholar 

  • Furitsu T, Saito H, Dvorak AM et al (1989) Development of human mast cells in vitro. Proc Natl Acad Sci 86:10039–10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli SJ, Kalesnikoff J, Grimbaldeston MA et al (2005a) Mast cells as “Tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  CAS  PubMed  Google Scholar 

  • Galli SJ, Nakae S, Tsai M (2005b) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg H, Lagunoff D (1967) The in vitro differentiation of mast cells. Cultures of cells from immunized mouse lymph nodes and thoracic duct lymph on fibroblast monolayers. J Cell Biol 35:685–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimbaldeston MA, Chen CC, Piliponski AM et al (2005) Mast cell-deficient W-sash C-kit mutant kitw-Sh/W-Sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurish MF, Austen KF (2001) The diverse role of mast cells. J Exp Med 194:F1–F5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurish MF, Boyce JA (2006) Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell. J Allergy Clin Immunol 117:1285–1291

    Article  CAS  PubMed  Google Scholar 

  • Gurish MF, Tao H, Abonia JP et al (2001) Intestinal mast cell progenitors require CD49dbeta7 (Alpha4beta7 Integrin) for tissue-specific homing. J Exp Med 194:1243–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy WB, Wesbrook FF (1895) The wandering cells of the alimentary canal. J Physiol 18:490–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irani AA, Schechter NM, Craig SS et al (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 83:4464–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irani AM, Nilsson G, Miettinen U et al (1992) Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells. Blood 80:3009–3021

    CAS  PubMed  Google Scholar 

  • Ishizaka T, Okudaira H, Mauser LE et al (1976) Development of rat mast cells in vitro. I. Differentiation of mast cells from thymus cells. J Immunol 116:747–754

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Mizuno SI, Arinobu Y et al (2006) The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20:3010–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly M (1900) Clasmatocytes et mastzellen. Comp Rend Soc Biol (Paris) 52:437–455

    Google Scholar 

  • Kanbe N, Kurosawa M, Miyachi Y et al (2000) Nerve growth factor prevents apoptosis of cord blood-derived human cultured mast cells synergistically with stem cell factor. Clin Exp Allergy 30:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Kanthack AA, Hardy WB (1894) The morphology and distribution of the wandering cells of mammalia. J Physiol 17:80–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Sawai N, Hidaka E et al (1999) Interleukin-6 directly modulates stem cell factor-dependent development of human mast cells derived from CD34 + cord blood cells. Blood 4:496–508

    Google Scholar 

  • Kirshenbaum AS, Kessler SW, Goff JP et al (1991) Demonstration of the origin of human mast cells from CD34 + bone marrow progenitor cells. J Immunol 146:1410–1415

    CAS  PubMed  Google Scholar 

  • Kirshenbaum AS, Goff JP, Dreskin SC et al (1989) IL-3-dependent growth of basophil-like cells and mast like cells from human bone marrow. J Immunol 149:2424–2429

    Google Scholar 

  • Kirshenbaum AS, Goff JP, Kessler SW et al (1992) Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34 + pluripotent progenitor cells. J Immunol 148:772–777

    CAS  PubMed  Google Scholar 

  • Kitamura Y, Go S (1979) Decreased production of mast cells in S1/S1d anemic mice. Blood 53:492–497

    CAS  PubMed  Google Scholar 

  • Kitamura Y, Ito A (2005) Mast cell-committed progenitors. Proc Natl Acad Sci 102:11129–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura Y, Shimada M, Hatanaka et al (1977) Development of mast cells from grafted bone marrow cells in irradiated mice. Nature 268: 442–443

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52:447–452

    CAS  PubMed  Google Scholar 

  • Lantz CS, Boesiger J, Song CH et al (1998) Role for interleukin-3 In mast-cell and basophil development and in immunity to parasites. Nature 392:90–93

    Article  CAS  PubMed  Google Scholar 

  • Levi-Schaffer F, Austen KF, Gravallese PM et al (1986) Coculture of Interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells. Proc Natl Acad Sci 83:6485–6488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi-Schaffer F, Austen KF, Caulfield JP et al (1987a) Co-culture of human lung-derived mast cells with mouse 3T3 fibroblasts: morphology and Ige-mediated release of histamine, prostaglandin D2, and leukotrienes. J Immunol 139:494–500

    CAS  PubMed  Google Scholar 

  • Levi-Schaffer F, Dayton ET, Austen KF et al (1987b) Mouse bone marrow-derived mast cells cocultured with fibroblasts. morphology and stimulation-induced release of histamine, leukotriene B4, leukotriene C4, and prostaglandin D2. J Immunol 139:3431–3441

    CAS  PubMed  Google Scholar 

  • Lorentz A (2002) Regulatory effects of stem cell factor and interleukin-4 on adhesion of human mast cells to extracellular matrix proteins. Blood 99:966–972

    Article  CAS  PubMed  Google Scholar 

  • Lorentz A, Bischoff SC (2001) Regulation of human intestinal mast cells by stem cell factor and IL-4. Immunol Rev 179:57–60

    Article  CAS  PubMed  Google Scholar 

  • Lorentz A, Hoppe J, Worthmann H et al (2007) Neurotrophin-3, but not nerve growth factor, promotes survival of human intestinal mast cells. Neurogastroenterol Motil 19:301–308

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Kannan Y, Ushio H et al (1991) Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 174:7–14

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa S, Sakashita K, Kinoshita T et al (2003) IL-9 enhances the growth of human mast cell progenitors under stimulation with stem cell factor. J Immunol 170:3461–3467

    Article  CAS  PubMed  Google Scholar 

  • Mitsui H, Furitsu T, Dvorak AM et al (1993) Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc Natl Acad Sci 90:735–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller C, Alfredsson J, Engström M et al (2005) Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood 106:1330–1336

    Article  PubMed  Google Scholar 

  • Nagao K, Yokoro K, Aaronson S (1981) Continuous lines of basophil/mast cells derived from normal mouse bone marrow. Science 212:333–335

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Sonoda T, Hayashi C, et al (1985) Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice: evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med 162:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama C (2005) GATA-1 Is Required for Expression of Fc RI on Mast Cells: Analysis of Mast Cells Derived from GATA-1 Knockdown Mouse Bone Marrow. Int Immunol 17:847–856

    Article  CAS  PubMed  Google Scholar 

  • Ochi H, Hirani WM, Yuan Q et al (1999) T helper cell type 2 cytokine-mediated comitogenic responses and Ccr3 expression during differentiation of human mast cells in vitro. J Exp Med 190:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okayama Y, Kawakami T (2006) Development, migration and survival of mast cells. Immunol Res 34:97–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittoni P, Tripodo C, Piconese S et al (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997

    Article  CAS  PubMed  Google Scholar 

  • Rodewald HR, Dessing M, Dvorak AM et al (1996) Identification of a committed precursor for the mast cell lineage. Science 271:818–822

    Article  CAS  PubMed  Google Scholar 

  • Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1734

    Article  CAS  PubMed  Google Scholar 

  • Saito H (2006) Culture of human mast cells from hemopoietic progenitors. Methods Mol Biol 315:113–122

    PubMed  Google Scholar 

  • Sakata-Yanagimoto M, Sakai T, Miyake Y et al (2011) Notch 2 signaling is required for proper mast cell distribution and mucosal immunity in the intestine. Blood 117:128–134

    Article  CAS  PubMed  Google Scholar 

  • Taghon T, Yui MA, Rothenberg EV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol 8:845–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam SY, Tsai M, Yamaguchi M et al (1997) Expression of functional trka receptor tyrosine kinase in the HMC-1 human mast cell line and in human mast cells. Blood 90:1807–1820

    CAS  PubMed  Google Scholar 

  • Tei H, Kasugai T, Tsuijimura T et al (1994) Characterization of cultured mast cells derived from Ws/Ws mast cell-deficient rats with a small deletion at tyrosine kinase domain of c-kit. Blood 83:913–925

    Google Scholar 

  • Tsai M (1991) The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. analysis by anatomical distribution, histochemistry, and protease phenotype. J Exp Med 174:125–131

    Article  CAS  PubMed  Google Scholar 

  • Valent P, Spanblochl E, Sperr WR et al (1992) Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood 80:2237–2245

    CAS  PubMed  Google Scholar 

  • Valent P, Akin C, Sperr WR et al (2005) Mastocytosis: pathology, genetics and current options for therapy. Leuk Lymph 46:35–48

    Article  CAS  Google Scholar 

  • Williams HU (1900) A critical summary of recent literature on plasma-cells and mast cells. Am J Med Sci 119:702–709

    Article  Google Scholar 

  • Winandy S, Brown M (2007) No DL1 notch ligand? GATA Be a mast cell. Nat Immunol 8:796–797

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Stoica G, Tasca SI et al (2000) Modulation of tumor angiogenesis by stem cell factor. Cancer Res 60:6757–6762

    CAS  PubMed  Google Scholar 

  • Zhou JS, Xing W, Friend DS et al (2007) Mast cell deficiency in Kit(W-Sh) mice does not impair antibody-mediated arthritis. J Exp Med 204:2797–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribatti, D. (2019). Mast Cell Ontogeny. In: The Mast Cell . Springer, Cham. https://doi.org/10.1007/978-3-030-24190-2_2

Download citation

Publish with us

Policies and ethics