Skip to main content

Optical Properties of Bound and Localized Excitons

  • Chapter
  • First Online:
Semiconductor Optics 1

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2198 Accesses

Abstract

In the previous chapter we discussed mainly the optical properties of intrinsic free excitons. Here we consider excitons bound to various types of defects and how they are observed in optical spectra (mainly in luminescence). Excitons can also get trapped in localized states in potential fluctuations of disordered bulk materials. We will discuss how this localization affects the optical spectra and present different approaches for the modeling of localization properties. Many of these aspects are also relevant for the structures of reduced dimensionality presented in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Haynes, Phys. Rev. Lett. 4, 361 (1960)

    Article  ADS  Google Scholar 

  2. D.C. Reynolds, C.W. Litton, T.C. Collins, Phys. Rev. 140, A1726 (1965)

    Article  ADS  Google Scholar 

  3. Ch. Solbrig, Z. Physik. 184, 293 (1965)

    Article  ADS  Google Scholar 

  4. Ch. Solbrig, E. Mollwo, Solid State Commun. 5, 625 (1967)

    Article  ADS  Google Scholar 

  5. J. Gutowski, Solid State Commun. 58, 523 (1986)

    Article  ADS  Google Scholar 

  6. D.C. Reynolds, C.W. Litton, T.C. Collins, Phys. Rev. 177, 1161 (1969)

    Article  ADS  Google Scholar 

  7. J. Shah, R.F. Leheny, W.F. Brinkmann, Phys. Rev. B 10, 659 (1974)

    Article  ADS  Google Scholar 

  8. C. Klingshirn, Phys. Status Solidi (b) 71, 547 (1975)

    Article  ADS  Google Scholar 

  9. P.J. Dean, D.C. Herbert, D. Bimberg, W.J. Choyke, Phys. Rev. Lett. 37, 1635 (1976)

    Article  ADS  Google Scholar 

  10. R. Helbig, Habilitation thesis, University of Erlangen (1976)

    Google Scholar 

  11. R. Kapelman, J. Lumin. 12/13, 775 (1976)

    Google Scholar 

  12. E. Tomzig, R. Helbig, J. Lumin. 14, 403 (1976)

    Article  Google Scholar 

  13. B. Hönerlage, U. Schröder, Phys. Rev. B 16, 3608 (1977)

    Article  ADS  Google Scholar 

  14. K. Bohnert et al., Solid State Commun. 27, 295 (1978)

    Article  ADS  Google Scholar 

  15. M.L.W. Thewalt, Solid State Commun. 25, 513 (1978)

    Article  ADS  Google Scholar 

  16. P.J. Dean, D.C. Herbert, in Excitons, ed. by K. Cho. Topics in Current Physics, vol. 14 (Springer, Berlin, 1979), p. 55

    Chapter  Google Scholar 

  17. H. Schrey, Doctoral thesis, University of Karlsruhe (TH) (1979)

    Google Scholar 

  18. G. Blattner et al., Phys. Status Solidi (b) 107, 105 (1981)

    Article  ADS  Google Scholar 

  19. O. Madelung, U. Rössler (ed.), Landolt–Börnstein. New Series, Group III, vol. 17a to i, 22a and b, 41A to D (Springer, Berlin, 1982–2001)

    Google Scholar 

  20. B.I. Shkolovskii, A.L. Efros, Electronic Properties of Doped Semiconductors. Springer Series in Solid-State Science, vol. 45 (Springer, Berlin, 1984)

    Google Scholar 

  21. B. Hönerlage et al., Phys. Rep. 124, 161 (1985)

    Article  ADS  Google Scholar 

  22. J. Hegarty, M.D. Sturge, J. Opt. Soc. Am. B 2, 1143 (1985)

    Article  ADS  Google Scholar 

  23. D.M. Finlayson (ed.), Localization and Interaction. Scottish Universities Summer School in Physics, 31st edn. (SUSSP, Edinburgh, 1986)

    Google Scholar 

  24. C.Y. Fong, I.P. Batra, S. Ciraci (eds.), Properties of Impurity States in Superlattice Semiconductors. NATO ASI Series B, vol. 183 (Plenum, New York, 1988)

    Google Scholar 

  25. H.-E. Swoboda et al., Phys. Status Solidi (b) 150, 749 (1988)

    Article  ADS  Google Scholar 

  26. J. Gutowski, NATO ASI Ser. B 200, 139 (1989)

    Article  Google Scholar 

  27. P.O. Holtz et al., Phys. Rev. B 40, 12338 (1989)

    Article  ADS  Google Scholar 

  28. P.C. Taylor, in Laser Spectroscopy of Solids II. Topics in Applied Physics, vol. 65 (Springer, Berlin, 1989), p. 257

    Google Scholar 

  29. R. Cingolani et al., Phys. Rev. Lett. 67, 891 (1991)

    Article  ADS  Google Scholar 

  30. A.A. Klochikhin, S.G. Ogloblin, Sov. Phys. JETP 73, 1122 (1991)

    Google Scholar 

  31. A. Villemaire, T. Steiner, M.L.W. Thewalt, Phys. Rev. B 44, 13426 (1991)

    Article  ADS  Google Scholar 

  32. C. Klingshirn, Excited states in semiconductors, in Optical Properties of Excited States in Solids, ed. by B. Di Bartolo, C. Beckwith. NATO ASI Series (Series B: Physics), vol. 301 (Springer, Boston, 1992)

    Google Scholar 

  33. L.C. Lenchshyn et al., Appl. Phys. Lett. 60, 3174 (1992)

    Google Scholar 

  34. J.-P. Noël et al., Appl. Phys. Lett. 61, 690 (1992)

    Article  ADS  Google Scholar 

  35. S. Permogorov, A. Reznitsky, J. Lumin. 52, 201 (1992)

    Article  Google Scholar 

  36. H. Schwab et al., Phys. Status Solidi (b) 172, 479 (1992)

    Article  ADS  Google Scholar 

  37. U. Siegner et al., Phys. Rev. B 46, 4564 (1992)

    Article  ADS  Google Scholar 

  38. R. Cingolani, Phys. Scr. T49B, 470 (1993)

    Article  ADS  Google Scholar 

  39. H. Kalt et al., Phys. B 191, 90 (1993)

    Article  ADS  Google Scholar 

  40. T.W. Steiner et al., Phys. Rev. B 47, 1265 (1993)

    Article  ADS  Google Scholar 

  41. A. Reznitsk et al., Phys. Status Solidi (b) 184, 159 (1994)

    Article  ADS  Google Scholar 

  42. K. Terashima et al., Appl. Phys. Lett. 65, 601 (1994)

    Article  ADS  Google Scholar 

  43. J. Gutowski, P. Bäume, K. Hauke in Properties of Wide Gap II–VI Semiconductors, ed. by R. Bhargava (INSPEC, London, 1997)

    Google Scholar 

  44. M.I.N. da Silva et al., J. Appl. Phys. 82, 3346 (1997)

    Article  ADS  Google Scholar 

  45. R. Westphäling et al., J. Lumin. 72–74, 980 (1997)

    Article  Google Scholar 

  46. T. Shinagawa, T. Okamure, Jpn. J. Appl. Phys. 37, 1939 (1998)

    Article  ADS  Google Scholar 

  47. A. Klochikhin et al., Phys. Rev. B 59, 12947 (1999)

    Article  ADS  Google Scholar 

  48. D. Lüerßen et al., Appl. Phys. Lett. 75, 3944 (1999)

    Article  ADS  Google Scholar 

  49. A. Reznitsky et al., Phys. Rev. B 59, 10268 (1999)

    Article  Google Scholar 

  50. G. von Freymann et al., Appl. Phys. Lett. 76, 203 (2000)

    Article  ADS  Google Scholar 

  51. S. Permogorov et al., J. Cryst. Growth 215, 1158 (2000)

    Article  ADS  Google Scholar 

  52. E.I. Rashba, J. Lumin. 87–89, 1 (2000)

    Article  Google Scholar 

  53. E. Kurtz et al., Appl. Phys. Lett. 79, 1118 (2001)

    Article  ADS  Google Scholar 

  54. C. Klingshirn (ed.), Landolt–Börnstein. New Series, Group III, vol. 34C, Parts 1 and 2 (Springer, Berlin, 2001 and 2004); Part 3, E. Kasper, C. Klingshirn (eds.) (2007)

    Google Scholar 

  55. W.I. Park, G.-C. Yi, H.M. Jang, Appl. Phys. Lett. 79, 2022 (2001)

    Article  ADS  Google Scholar 

  56. A. Reznitsky et al., in Proceedings of 9th International Symposium on Nanostructures, NANO 2001, St. Petersburg, A.F. Ioffe Institute, Russia (2001), p. 538

    Google Scholar 

  57. S.A. Tarasenko et al., Semicond. Sci. Technol. 16, 486 (2001)

    Article  ADS  Google Scholar 

  58. S. Wachter et al., Phys. Status Solidi (b) 224, 437 (2001)

    Article  ADS  Google Scholar 

  59. E. Runge, in Solid State Physics, vol. 57, ed. by H. Ehrenreich, F. Spaepen (Academic, San Diege, 2002)

    Google Scholar 

  60. A. Reznitsky et al., Phys. Status Solidi C 0, 280 (2002)

    Google Scholar 

  61. S. Strauf et al., Phys. Rev. Lett. 89, 177403 (2002)

    Article  ADS  Google Scholar 

  62. A. Zeuner et al., Phys. Status Solidi B 234, R7 (2002)

    Article  ADS  Google Scholar 

  63. M. Dremel et al., J. Appl. Phys. 93, 6142 (2003)

    Article  ADS  Google Scholar 

  64. A. Mookerjee (ed.), Electronic Structure of Alloys, Surfaces and Clusters (Taylor and Francis, London, 2003)

    Google Scholar 

  65. M. Strassburg et al., Phys. Status Solidi C 0(6), 1835 (2003)

    Google Scholar 

  66. J. Singh, K. Simakawa, Advances in Amorphous Semiconductors (Taylor and Francis, London, 2003)

    Book  Google Scholar 

  67. R. Zimmermann, E. Runge, V. Savona, Phys. Status Solidi (b) 238, 478 (2003)

    Article  ADS  Google Scholar 

  68. A. Klochikhin et al., Phys. Rev. B 69, 085308 (2004)

    Article  ADS  Google Scholar 

  69. A. Klochikhin et al., in 27th ICPS, Flagstaff. AIP Conference Proceedings, vol. 772 (2005), pp. 275, 935

    Google Scholar 

  70. B.K. Meyer et al., Phys. Status Solidi (b) 241, 231 (2004)

    Article  ADS  Google Scholar 

  71. G. Mannarini, W. Langbein, R. Zimmermann, Phys. Status Solidi C 1(3), 489 (2004); Phys. Rev. B 69, 085326 (2004)

    Google Scholar 

  72. F. Reuss et al., J. Appl. Phys. 95, 3385 (2009)

    Article  ADS  Google Scholar 

  73. R. Sauer, K. Thonke, in Optics of Semiconductors and Nanostructures, ed. by H. Kalt, M. Hetterich. Springer Series in Solid State Sciences, vol. 146 (Springer, Berlin, 2004), p. 73

    Google Scholar 

  74. D. Wang et al., J. Phys. Condens. Matter 16, 4635 (2004)

    Article  ADS  Google Scholar 

  75. R. Zimmermann, E. Runge, Phys. Rev. B 69, 155307 (2004)

    Article  ADS  Google Scholar 

  76. D.G. Allen, M.S. Sherwin, C.R. Stanley, Phys. Rev. B 72, 035302 (2005)

    Google Scholar 

  77. Q. Li et al., Europhys. Lett. 71, 994 (2005)

    Article  ADS  Google Scholar 

  78. Ü. Özgür et al., Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  79. J. Fallert et al., J. Appl. Phys. 101, 073506 (2007)

    Article  ADS  Google Scholar 

  80. C. Klingshirn, Phys. Status Solidi B 244, 3027 (2007)

    Article  ADS  Google Scholar 

  81. M. Schirra et al., Phys. Rev. B 77, 125215 (2008)

    Article  ADS  Google Scholar 

  82. T. Ishikawa et al., Phys. B 404, 4552 (2009)

    Article  ADS  Google Scholar 

  83. J.L. Lyons, A. Janotti, C.G. van de Walle, Appl. Phys. Lett. 95, 252105 (2009)

    Article  ADS  Google Scholar 

  84. I.V. Rogozin, Thin Solid Films 517, 4318 (2009)

    Article  ADS  Google Scholar 

  85. C.P. Dietrich et al., New J. Phys. 12, 033030 (2010)

    Article  ADS  Google Scholar 

  86. M. Feneberg et al., Phys. Rev. B 82, 075208 (2010)

    Article  ADS  Google Scholar 

  87. C. Klingshirn et al., Phys. Status Solidi B 247, 1424 (2007)

    Article  ADS  Google Scholar 

  88. C. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  89. C. Klingshirn et al., Phys. Status Solidi B 247, 1424 (2010)

    Article  ADS  Google Scholar 

  90. C. Klingshirn, in Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Berlin, 2010)

    Chapter  Google Scholar 

  91. B.K. Meyer, in Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Berlin, 2010)

    Chapter  Google Scholar 

  92. C. Rauch et al., J. Appl. Phys. 107, 24311 (2010)

    Article  Google Scholar 

  93. J.W. Sun et al., J. Appl. Phys. 108, 013503 (2010)

    Article  ADS  Google Scholar 

  94. A.M. Smith, A.S. Nie, Acc. Chem. Res. 43, 190 (2010)

    Article  Google Scholar 

  95. M.R. Wagner et al., Phys. Rev. B 84, 35313 (2011)

    Article  ADS  Google Scholar 

  96. J.G. Reynolds, C.L. Reynolds, Adv. Condens. Matter Phys. 2014, 457058 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

22.1

Show by a semiquantitative guess that the A\(^-\)X complex is usually unbound.

22.2

For some standard semiconductors, such as Si, Ge, or GaAs, calculate the binding energy of electrons and holes to donors and acceptors, respectively. Find some data for the binding energies of excitons to these complexes and compare the results with Haynes’ rule.

22.3

Consider excitons localized in a tailed potential like in Fig. 22.10. Describe qualitatively the photoluminescence lineshape. Why is it useful to plot the intensity of the emission spectrum on a logarithmic scale? What do you expect for very low temperatures?

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Optical Properties of Bound and Localized Excitons. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_22

Download citation

Publish with us

Policies and ethics