Abstract
Identification of thyroid stem cells in the past few years has made important contributions to our understanding of the cellular and molecular mechanisms that induce tissue regeneration and repair. Embryonic stem (ES) cells and induced-pluripotent stem cells have been used to establish reliable protocols to obtain mature thyrocytes and functional follicles for the treatment of thyroid diseases in mice. In addition, the discovery of resident thyroid progenitor cells, along with other sources of stem cells, has defined in detail the mechanisms responsible for tissue repair upon moderate or severe organ injury.
In this chapter, we highlight in detail the current state of research on thyroid stem cells by focusing on (1) the description of the first experiments performed to obtain thyroid follicles from embryonic stem cells, (2) the identification of resident stem cells in the thyroid gland, and (3) the definition of the current translational in vivo and in vitro models used for thyroid tissue repair and regeneration.
Keywords
- Thyroid regeneration
- Organ repair
- Thyroid resident stem cells
- Solid cell nest (SCN)
- Side population (SP)
- Embryonic stem cells (ES cells)
- TSH
- Activin-A
- Thyrospheres
- Thyroid follicles
- Parafollicular cells
- Thyroglobulin (Tg)
- Thyroperoxidase (TPO)
- Oct4
- Sca1
This is a preview of subscription content, access via your institution.
Buying options



References
Puglisi MA, Giuliani L, Fierabracci A (2008) Identification and characterization of a novel expandable adult stem/progenitor cell population in the human exocrine pancreas. J Endocrinol Investig 31(6):563–572
Maiorana A, Fierabracci A, Cianfarani S (2009) Isolation and characterization of omental adipose progenitor cells in children: a potential tool to unravel the pathogenesis of metabolic syndrome. Horm Res 72(6):348–358
Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E et al (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16(3):1091–1100
Alessandri G, Pagano S, Bez A, Benetti A, Pozzi S, Iannolo G et al (2004) Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet Lond Engl 364(9448):1872–1883
Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921
Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN, Moscatelli D et al (2009) High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells Dayt Ohio 27(9):2220–2228
Hoshi N, Kusakabe T, Taylor BJ, Kimura S (2007) Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology 148(9):4251–4258
Thomas T, Nowka K, Lan L, Derwahl M (2006) Expression of endoderm stem cell markers: evidence for the presence of adult stem cells in human thyroid glands. Thyroid Off J Am Thyroid Assoc 16(6):537–544
Fierabracci A, Puglisi MA, Giuliani L, Mattarocci S, Gallinella-Muzi M (2008) Identification of an adult stem/progenitor cell-like population in the human thyroid. J Endocrinol 198(3):471–487
Lin R-Y, Davies TF (2006) Derivation and characterization of thyrocyte-like cells from embryonic stem cells in vitro. Methods Mol Biol Clifton NJ 330:249–261
Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y et al (2012) Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology 153(5):2514–2525
Okamoto M, Hayase S, Miyakoshi M, Murata T, Kimura S (2013) Stem cell antigen 1-positive mesenchymal cells are the origin of follicular cells during thyroid regeneration. PLoS One 8(11):e80801
Chen CY, Kimura H, Landek-Salgado MA, Hagedorn J, Kimura M, Suzuki K et al (2009) Regenerative potentials of the murine thyroid in experimental autoimmune thyroiditis: role of CD24. Endocrinology 150(1):492–499
Takano T (2007) Fetal cell carcinogenesis of the thyroid: theory and practice. Semin Cancer Biol 17(3):233–240
Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V et al (2007) Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148(4):1797–1803
Zito G, Richiusa P, Bommarito A, Carissimi E, Russo L, Coppola A et al (2008) In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS One 3(10):e3544
Kimura S (2014) Thyroid regeneration: how stem cells play a role? Front Endocrinol 5:55
Mauchamp J, Mirrione A, Alquier C, André F (1998) Follicle-like structure and polarized monolayer: role of the extracellular matrix on thyroid cell organization in primary culture. Biol Cell 90(5):369–380
Hoyes AD, Kershaw DR (1985) Anatomy and development of the thyroid gland. Ear Nose Throat J 64(7):318–333
Lazzaro D, Price M, de Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Dev Camb Engl 113(4):1093–1104
Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19(1):87–90
Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–69
De Felice M, Ovitt C, Biffali E, Rodriguez-Mallon A, Arra C, Anastassiadis K et al (1998) A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet 19(4):395–398
Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D et al (2000) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Dev Camb Engl 127(11):2433–2445
Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N et al (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386(6624):488–493
Keller G, Snodgrass HR (1999) Human embryonic stem cells: the future is now. Nat Med 5(2):151–152
Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394
Boheler KR, Czyz J, Tweedie D, Yang H-T, Anisimov SV, Wobus AM (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91(3):189–201
Nishimura F, Yoshikawa M, Kanda S, Nonaka M, Yokota H, Shiroi A et al (2003) Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells Dayt Ohio 21(2):171–180
Shirahashi H, Wu J, Yamamoto N, Catana A, Wege H, Wager B et al (2004) Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplant 13(3):197–211
Lin R-Y, Kubo A, Keller GM, Davies TF (2003) Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology 144(6):2644–2649
Arufe MC, Lu M, Lin R-Y (2009) Differentiation of murine embryonic stem cells to thyrocytes requires insulin and insulin-like growth factor-1. Biochem Biophys Res Commun 381(2):264–270
Marians RC, Ng L, Blair HC, Unger P, Graves PN, Davies TF (2002) Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc Natl Acad Sci U S A 99(24):15776–15781
Ma R, Latif R, Davies TF (2009) Thyrotropin-independent induction of thyroid endoderm from embryonic stem cells by activin A. Endocrinology 150(4):1970–1975
Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao X-H, Dumitrescu AM et al (2012) Generation of functional thyroid from embryonic stem cells. Nature 491(7422):66–71
Kurmann AA, Serra M, Hawkins F, Rankin SA, Mori M, Astapova I et al (2015) Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell 17(5):527–542
Coclet J, Foureau F, Ketelbant P, Galand P, Dumont JE (1989) Cell population kinetics in dog and human adult thyroid. Clin Endocrinol 31(6):655–665
Dumont JE, Lamy F, Roger P, Maenhaut C (1992) Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev 72(3):667–697
Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806
Thomas D, Friedman S, Lin R-Y (2008) Thyroid stem cells: lessons from normal development and thyroid cancer. Endocr Relat Cancer 15(1):51–58
Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401(6751):390–394
Hussain SZ, Strom SC, Kirby MR, Burns S, Langemeijer S, Ueda T et al (2005) Side population cells derived from adult human liver generate hepatocyte-like cells in vitro. Dig Dis Sci 50(10):1755–1763
Lan L, Cui D, Nowka K, Derwahl M (2007) Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J Clin Endocrinol Metab 92(9):3681–3688
Goss RJ (1980) Animal models for growth. Proc Nutr Soc 39(3):213–217
Bucher NL (1967) Experimental aspects of hepatic regeneration. N Engl J Med 277(14):738–746
Clark OH, Lambert WR, Cavalieri RR, Rapoport B, Hammond ME, Ingbar SH (1976) Compensatory thyroid hypertrophy after hemithyroidectomy in rats. Endocrinology 99(4):988–995
Johansen R, Gardner RE, Galante M, Marchi FF, Ledwich TW, Soley MH et al (1951) An experimental study of thyroid regeneration following subtotal thyroidectomy. Surg Gynecol Obstet 93(3):303–309
Ahmed MT, Sinha AK, Pickard MR, Kim KD, Ekins RP (1993) Hypothyroidism in the adult rat causes brain region-specific biochemical dysfunction. J Endocrinol 138(2):299–305
Biondo-Simões Mde LP, GRA C, Montibeller GR, Sadowski JA, Biondo-Simões R (2007) The influence of hypothyroidism on liver regeneration: an experimental study in rats. Acta Cir Bras 22(Suppl 1):52–56
Chen B-Y, Wang X, Chen L-W, Luo Z-J (2012) Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells. Curr Drug Targets 13(4):561–571
Fong ELS, Chan CK, Goodman SB (2011) Stem cell homing in musculoskeletal injury. Biomaterials 32(2):395–409
Mikhailov VM, Sokolova AV, Serikov VB, Kaminskaya EM, Churilov LP, Trunin EM et al (2012) Bone marrow stem cells repopulate thyroid in X-ray regeneration in mice. Pathophysiol Off J Int Soc Pathophysiol 19(1):5–11
Wollman SH, Hilfer SR (1978) Embryologic origin of the various epithelial cell types in the second kind of thyroid follicle in the C3H mouse. Anat Rec 191(1):111–121
Burstein DE, Nagi C, Wang BY, Unger P (2004 Apr) Immunohistochemical detection of p53 homolog p63 in solid cell nests, papillary thyroid carcinoma, and Hashimoto’s thyroiditis: a stem cell hypothesis of papillary carcinoma oncogenesis. Hum Pathol 35(4):465–473
Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, Soares P, Cameselle-Teijeiro JF, Silva P et al (2004) Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Mod Pathol Off J U S Can Acad Pathol Inc. 17(7):819–826
Reis-Filho JS, Preto A, Soares P, Ricardo S, Cameselle-Teijeiro J, Sobrinho-Simões M (2003) p63 expression in solid cell nests of the thyroid: further evidence for a stem cell origin. Mod Pathol Off J U S Can Acad Pathol Inc 16(1):43–48
Ozaki T, Nagashima K, Kusakabe T, Kakudo K, Kimura S (2011) Development of thyroid gland and ultimobranchial body cyst is independent of p63. Lab Investig J Tech Methods Pathol 91(1):138–146
Drosos I, Kolios G (2013) Stem cells in liver regeneration and their potential clinical applications. Stem Cell Rev 9(5):668–684
Duncan AW, Dorrell C, Grompe M (2009) Stem cells and liver regeneration. Gastroenterology 137(2):466–481
Gilgenkrantz H, Collin de l’Hortet A (2011) New insights into liver regeneration. Clin Res Hepatol Gastroenterol 35(10):623–629
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zito, G., Coppola, A., Pizzolanti, G., Giordano, C. (2019). Heterogeneity of Stem Cells in the Thyroid. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology, vol 1169. Springer, Cham. https://doi.org/10.1007/978-3-030-24108-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-24108-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24107-0
Online ISBN: 978-3-030-24108-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)