Skip to main content

Heterogeneity of Stem Cells in the Ovary

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Different Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1169))

Abstract

Every organ in the body is thought to harbor two populations of stem cells, including the quiescent and the actively dividing, that leads to heterogeneity among them. It is generally believed that the ovary harbors a fixed number of follicles at birth that differentiate during fetal development from the primordial germ cells. The numbers of follicles decrease by age, leading to menopause. However, in 2004, it was suggested that ovary may harbor stem cells that are possibly involved in the formation of new follicles throughout reproductive life. Research over little more than a decade shows that ovarian stem cells include a quiescent population of very small embryonic-like stem cells (VSELs) and slightly bigger, actively dividing ovarian stem cells (OSCs). This heterogeneity among ovarian stem cells is similar to the presence of VSELs along with spermatogonial stem cells (SSCs) in the testis or hematopoietic stem cells (HSCs) in the hematopoietic system. VSELs express embryonic markers, including nuclear OCT-4, and are lodged in the ovary surface epithelium (OSE). Ovarian VSELs undergo asymmetric cell division to self-renew and give rise to OSCs that in turn undergo symmetric cell divisions and clonal expansion (germ cell nest) followed by meiosis to form an oocyte that gets assembled as a primordial follicle. Both VSELs and OSCs also express receptors for follicle-stimulating hormone (FSHR) and are directly activated by FSH to undergo neo-oogenesis and primordial follicle assembly. Whether stimulation of ovaries by FSH in Infertility Clinics activates the stem cells leading to the formation of multiple follicles needs further investigation. Epithelial cells lining the surface of ovary provide a niche to the stem cells under normal circumstances and undergo epithelial-mesenchymal transition (EMT) to form granulosa cells for primordial follicle assembly. Compromised function of the epithelial cells with age possibly leads to inability of stem cells to form follicles, leading to menopause. More than 90% of ovarian cancers arise in the OSE, possibly due to excessive self-renewal of VSELs. Altered biology of the OSE cells results in the formation of myofibroblasts by EMT and may provide a cancerous niche that supports excessive expansion of the stem cells lodged in the OSE, leading to ovarian cancer. Ovarian cancer cells express markers like OCT-4 and FSHR, which are also expressed by the VSELs lodged in the OSE, whereas the epithelial cells are distinctly negative for the same. Lot more research is required in the field to gain further understanding of ovarian stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clevers H, Watt FM (2018) Defining adult stem cells by function, not by phenotype. Annu Rev Biochem 87:1015–1027

    Article  CAS  PubMed  Google Scholar 

  2. De Rosa L, De Luca M (2012) Cell biology: dormant and restless skin stem cells. Nature 489:215–217

    Article  PubMed  Google Scholar 

  3. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clevers H (2015) What is an adult stem cell? Science 350:1319–1320

    Article  CAS  PubMed  Google Scholar 

  5. Bhartiya D, Patel H, Ganguly R, Shaikh A, Shukla Y, Sharma D, Singh P (2018) Novel insights into adult and cancer stem cell biology. Stem Cells Dev. https://doi.org/10.1089/scd.2018.0118

    Article  PubMed  Google Scholar 

  6. Bhartiya D, Patel H (2015) Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer. Stem Cell Res Ther. https://doi.org/10.1186/s13287-015-0084-3

  7. Patel H, Bhartiya D (2016) Testicular stem cells express follicle stimulating hormone receptors and are directly modulated by FSH. Reprod Sci 23(11):1493–1508

    Article  CAS  PubMed  Google Scholar 

  8. Ganguly R, Metkari S, Bhartiya D (2018) Dynamics of bone marrow VSELs and HSCs in response to treatment with gonadotropin and steroid hormones, during pregnancy and evidence to support their asymmetric/symmetric cell divisions. Stem Cell Rev Rep 14:110–124

    Article  CAS  PubMed  Google Scholar 

  9. Patel H, Bhartiya D, Parte S (2018) Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. J Ovarian Res 11:3. https://doi.org/10.1186/s13048-017-0377-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. James K, Bhartiya D, Ganguly R et al (2018) Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in the adult mouse uterine endometrium. J Ovarian Res. https://doi.org/10.1186/s13048-018-0454-4

  11. Ratajczak MZ, Ratajczak J, Kucia M (2019) Very small embryonic-like stem cells (VSELs). Circ Res 124(2):208–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S (2016) Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 23(1):41–76

    Article  PubMed  Google Scholar 

  13. Virant-Klun I (2016) Very small embryonic-like stem cells: a potential developmental link between germinal lineage and hematopoiesis in humans. Stem Cells Dev 25(2):101–113

    Article  CAS  PubMed  Google Scholar 

  14. Kassmer SH, Krause DS (2013) Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev. https://doi.org/10.1002/mrd.22168

    Article  CAS  PubMed  Google Scholar 

  15. Kucia M, Machalinski B, Ratajczak MZ (2006) The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp (Wars) 66(4):331–341

    Google Scholar 

  16. Ratajczak MZ, Ratajczak J, Suszynska M et al (2017) A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circ Res 120(1):166–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  CAS  PubMed  Google Scholar 

  18. Lahlil R, Scrofani M, Barbet R et al (2018) VSELs maintain their pluripotency and competence to differentiate after enhanced ex vivo expansion. Stem Cell Rev 14(4):510–524

    Article  CAS  PubMed Central  Google Scholar 

  19. Monti M, Imberti B, Bianchi N et al (2017) A novel method for isolation of pluripotent stem cells from human umbilical cord blood. Stem Cells Dev 26(17):1258–1269

    Article  CAS  PubMed  Google Scholar 

  20. Shaikh A, Anand S, Kapoor S et al (2017) Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Rev 13:202–216

    Article  CAS  Google Scholar 

  21. Bhartiya D (2017) Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Rev 13(6):713–724

    Article  CAS  Google Scholar 

  22. Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC, Ratajczak MZ (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after co-culture over OP9 stromal cells. Exp Hematol 39(2):225–237

    Article  CAS  PubMed  Google Scholar 

  23. Anand S, Bhartiya D, Sriraman K et al (2014) Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther. https://doi.org/10.4172/2157-7633.1000216

  24. Anand S, Bhartiya D, Sriraman K, Mallick A (2016) Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Rev 12(6):682–697

    Article  CAS  Google Scholar 

  25. Sriraman K, Bhartiya D, Anand S et al (2015) Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reprod Sci 22:884–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurkure P, Prasad M, Dhamankar V et al (2015) Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reprod Biol Endocrinol. https://doi.org/10.1186/s12958-015-0121-1

  27. Stimpfel M, Skutella T, Kubista M, Malicev E, Conrad S, Virant-Klun I (2012) Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. J Biomed Biotechnol. https://doi.org/10.1155/2012/291038

    Article  Google Scholar 

  28. Virant-Klun I, Zech N, Rozman P (2008) Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 76(8):843–856

    Article  CAS  PubMed  Google Scholar 

  29. Gunjal P, Bhartiya D, Metkari S et al (2015) Very small embryonic-like stem cells are the elusive mouse endometrial stem cells-a pilot study. J Ovarian Res 8:9. https://doi.org/10.1186/s13048-015-0138-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhartiya D (2015) Stem cells, progenitors & regenerative medicine: A retrospection. Indian J Med Res 141(2):154–161

    Google Scholar 

  31. Bhartiya D (2018) The need to revisit the definition of mesenchymal and adult stem cells based on their functional attributes. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0833-1

  32. Johnson J, Canning J, Kaneko T et al (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428:145–150

    Article  CAS  PubMed  Google Scholar 

  33. Navaroli DM, Tilly JL, Woods DC (2016) Isolation of mammalian oogonial stem cells by antibody-based fluorescence-activated cell sorting. Methods Mol Biol 1457:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin JJ, Woods DC, Tilly JL (2019) Implications and current limitations of oogenesis from female germline or oogonial stem cells in adult mammalian ovaries. Cells 8(2):pii: E93. https://doi.org/10.3390/cells8020093

    Article  Google Scholar 

  35. Patel H, Bhartiya D, Parte S et al (2013) Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res. https://doi.org/10.1186/1757-2215-6-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Virant-Klun V (2018) Functional testing of primitive oocyte-like cells developed in ovarian surface epithelium cell culture from small VSEL-like stem cells: can they be fertilized one day? Stem Cell Rev Rep 14(5):715–721

    Article  CAS  PubMed  Google Scholar 

  37. Virant-Klun I, Kenda-Suster N, Smrkolj S (2016) Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res. https://doi.org/10.1186/s13048-016-0221-3

  38. Parte SC, Batra SK, Kakar SS (2018) Characterization of stem cell and cancer stem cell populations in ovary and ovarian tumors. J Ovarian Res. https://doi.org/10.1186/s13048-018-0439-3

  39. Parte SC, Smolenkov A, Batra SK, Ratajczak MZ, Kakar SS (2017) Ovarian cancer stem cells: unraveling a germline connection. Stem Cells Dev 26(24):1781–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ratajczak MZ, Bujko K, Mack A, Kucia M, Ratajczak J (2018) Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia. https://doi.org/10.1038/s41375-018-0294-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parte S, Bhartiya D, Telang J et al (2011) Detection, characterization and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20(8):1451–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parte S, Patel H, Sriraman K, Bhartiya D (2015) Isolation and characterization of stem cells in the adult mammalian ovary. Methods Mol Biol 1235:203–229

    Article  CAS  PubMed  Google Scholar 

  43. Kumar N, Hinduja I, Nagvenkar P et al (2009) Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Stem Cells Dev 18:435–445

    Article  CAS  PubMed  Google Scholar 

  44. Silvestris E, Cafforio P, D’Oronzo S et al (2018) In vitro differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization. Hum Reprod 33:464–473

    Article  CAS  PubMed  Google Scholar 

  45. Bhartiya D, Patel H, Parte S (2018) Improved understanding of very small embryonic-like stem cells in adult mammalian ovary. Hum Reprod 33(5):978–979

    Article  PubMed  Google Scholar 

  46. Lei L, Spradling AC (2016) Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 352(6281):95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lei L, Spradling AC (2013) Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci 110(21):8585–8590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhartiya D, Sriraman K, Parte S et al (2013) Ovarian stem cells: absence of evidence is not evidence of absence. J Ovarian Res. https://doi.org/10.1186/1757-2215-6-65

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pepling ME, de Cuevas M et al (1999) Germline cysts: a conserved phase of germ cell development? Trends Cell Biol 9:257–262

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida S (2016) From cyst to tubule: innovations in vertebrate spermatogenesis. Wiley Interdiscip Rev Dev Biol 5(1):119–131

    Article  PubMed  Google Scholar 

  51. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhartiya D, Patel H (2018) Ovarian stem cells-resolving controversies. J Assist Reprod Genet 35(3):393–398

    Article  PubMed  Google Scholar 

  53. Bhartiya D, Parte S, Patel H, Sriraman K, Zaveri K, Hinduja I (2016) Novel action of FSH on stem cells in adult mammalian ovary induces postnatal oogenesis and primordial follicle assembly. Stem Cells Int. https://doi.org/10.1155/2016/5096596

    Article  Google Scholar 

  54. Bhartiya D (2017) Letter to the editor: rejuvenate eggs or regenerate ovary? Mol Cell Endocrinol 446:111–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to various funding agencies (ICMR, DBT, DST) that provided support over years to arrive at this understanding. We also acknowledge other colleagues in our group including Seema Parte for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhartiya, D., Patel, H., Sharma, D. (2019). Heterogeneity of Stem Cells in the Ovary. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology, vol 1169. Springer, Cham. https://doi.org/10.1007/978-3-030-24108-7_11

Download citation

Publish with us

Policies and ethics