Skip to main content

Oncobiome at the Forefront of a Novel Molecular Mechanism to Understand the Microbiome and Cancer

  • Chapter
  • First Online:
Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics

Abstract

The microbiome comprises all the genetic material within a microbiota, that represents tenfold higher than that of our cells. The microbiota it includes a wide variety of microorganisms such as bacteria, viruses, protozoans, fungi, and archaea, and this ecosystem is personalized in any body space of every individual. Balanced microbial communities can positively contribute to training the immune system and maintaining immune homeostasis. Dysbiosis is a change in the normal microbiome composition that can initiate chronic inflammation, epithelial barrier breaches, and overgrowth of harmful bacteria. The next-generation sequencing methods have revolutionized the study of the microbiome. Bioinformatic tools to manage large volumes of new information, it became possible to assess species diversity and measure dynamic fluctuations in microbial communities. The burden of infections that are associated to human cancer is increasing but is underappreciated by the cancer research community. The rich content in microbes of normal and tumoral tissue reflect could be defining diverse physiological or pathological states. Genomic research has emerged a new focus on the interplay between the human microbiome and carcinogenesis and has been termed the ‘oncobiome’. The interactions among the microbiota in all epithelium, induce changes in the host immune interactions and can be a cause of cancer. Microbes have been shown to have systemic effects on the host that influence the efficacy of anticancer drugs. Metagenomics allows to investigate the composition of microbial community. Metatranscriptome analysis applies RNA sequencing to microbial samples to determine which species are present. Cancer can be caused by changes in the microbiome. The roles of individual microbial species in cancer progression have been identified long ago for various tissue types. The identification of microbiomes of drug resistance in the treatment of cancer patients has been the subject of numerous microbiome studies. The complexity of cancer genetic alterations becomes irrelevant in certain cancers to explain the origin, the cause or the oncogenic maintenance by the oncogene addiction theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zama D, Biagi E, Masetti R, Gasperini P, Prete A, Candela M, Brigidi P, Pession A (2017) Gut microbiota and hematopoietic stem cell transplantation: ¿where do we stand? Bone Marrow Transplant 52(1):7–14

    Article  CAS  Google Scholar 

  2. Sekirov I, Finlay BB (2009) The role of the intestinal microbiota in enteric infection. J Physiol 587(Pt 17):4159–4167

    Article  CAS  Google Scholar 

  3. Schwabe R, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13(11):800–812

    Article  CAS  Google Scholar 

  4. Candela M, Turroni S, Biagi E, Carbonero F, Rampelli S, Fiorentini C et al (2014) Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol 20:908–922

    Article  Google Scholar 

  5. Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372

    Article  CAS  Google Scholar 

  6. Gevers D, Knight R, Petrosino J et al (2012) The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol 10(8):e1001377

    Article  CAS  Google Scholar 

  7. Thomas RM, Jobin C (2015) The microbiome and cancer: is the ‘Oncobiome’ mirage real? Trends Cancer 1(1):24–35

    Article  Google Scholar 

  8. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615

    Article  Google Scholar 

  9. Hieken TJ, Chen J, Hoskin TL et al (2016) The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 6:30751

    Article  CAS  Google Scholar 

  10. Pfirschke C, Garris C, Pittet MJ (2015) Common TLR5 mutations control cancer progression. Cancer Cell 27(1):1–3

    Article  CAS  Google Scholar 

  11. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/βcatenin signaling via its FadA adhesin. Cell Host Microbe 14(2):195–206

    Article  CAS  Google Scholar 

  12. Iida N, Dzutsev A, Stewart CA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  Google Scholar 

  13. Sivan A, Corrales L, Hubert N et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  Google Scholar 

  14. Vétizou M, Pitt J, Daillère R et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  Google Scholar 

  15. Zitvogel L, Ayyoub M, Routy B, Kroemer G (2016) Microbiome and anticancer Immunosurveillance. Cell 165(2):276–287

    Article  CAS  Google Scholar 

  16. Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489(7415):250–256

    Article  CAS  Google Scholar 

  17. Mullish BH, Osborne LS, Marchesi JR, McDonald JAK (2018) The implementation of omics technologies in cancer microbiome research. Ecancermedicalscience 12:864

    Article  Google Scholar 

  18. Vogtmann E, Goedert JJ (2016) Epidemiologic studies of the human microbiome and cancer. Br J Cancer 114(3):237–242

    Article  CAS  Google Scholar 

  19. Vázquez-Castellanos JF, García-López R, Pérez-Brocal V, Pignatelli M, Moya A (2014) Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut. BMC Genomics 15:37

    Article  Google Scholar 

  20. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21(3):803–814

    Article  Google Scholar 

  21. Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberón X, Del Pozo-Yauner L, Ochoa-Leyva A (2015) Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 13:390–401

    Article  CAS  Google Scholar 

  22. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics. Unit10.7

    Google Scholar 

  23. Janda, Abbott (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45(9):2761–2764

    Article  CAS  Google Scholar 

  24. Pevsner-Fischer M, Tuganbaev T, Meijer M et al (2016) Role of the microbiome in non-gastrointestinal cancers. World J Clin Oncol 7(2):200–213

    Article  Google Scholar 

  25. Luo Y, Chen GL, Hannemann N et al (2015) Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab 22(5):886–894

    Article  CAS  Google Scholar 

  26. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330 (612):1768–1773

    Article  CAS  Google Scholar 

  27. MetaHIT: metagenomics of the human intestinal tract. www.metahit.eu/. Accessed 7 Feb 2017

  28. NIH Human Microbiome Project (HMP). hmpdacc.org/. Accessed 7 Feb 2017.

  29. NIH National Cancer Institute. https://www.cancer.gov/aboutcancer/causes-prevention/risk/infectious-agents/h-pylori-fact-sheet. Accessed 15 Feb 2017

Download references

Acknowledgments

The contributors of this chapter want to thank Jair Rangel MSc for prepare and made the technical review of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Astudillo-de la Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Astudillo-de la Vega, H., Alonso-Luna, O., Ali-Pérez, J., López-Camarillo, C., Ruiz-Garcia, E. (2019). Oncobiome at the Forefront of a Novel Molecular Mechanism to Understand the Microbiome and Cancer. In: Ruiz-Garcia, E., Astudillo-de la Vega, H. (eds) Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics. Advances in Experimental Medicine and Biology, vol 1168. Springer, Cham. https://doi.org/10.1007/978-3-030-24100-1_10

Download citation

Publish with us

Policies and ethics