Advertisement

Gesture Control System for Industry 4.0 Human-Robot Interaction – A Usability Test

  • Luis Roda-SanchezEmail author
  • Teresa Olivares
  • Arturo S. García
  • Celia Garrido-Hidalgo
  • Antonio Fernández-Caballero
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1006)

Abstract

The Industry 4.0 paradigm pursues improvements in production rate, flexibility, efficiency, quality, among others, through the use of technologies like Internet of Things (IoT), ambient intelligence and collaborative robots. Robots developing precision tasks, works in hazardous environments or movements of heavy parts, autonomously or in cooperation with workers, offer great advantages. Although collaboration provides great benefits, these technologies should be appropriate for all kind of workers, independently of their technical skills. If this problem is not addressed properly, irruption of robots could lead to social instability and/or rejection of useful advances. In this work, a gesture control system based on wearables oriented to Industry 4.0 robots is tested with real users to validate a novel gesture control system as an intuitive tool.

Keywords

IoT Industry 4.0 Gesture control Human-robot interaction Ambient intelligence 

Notes

Acknowledgements

This work was partially supported by Spanish Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant.

References

  1. 1.
    Gascueña, J.M., Navarro, E., Fernández-Sotos, P., Fernández-Caballero, A., Pavón, J.: IDK and ICARO to develop multi-agent systems in support of ambient intelligence. J. Intell. Fuzzy Syst. 28(1), 3–15 (2015)Google Scholar
  2. 2.
    Rivas-Casado, A., Martinez-Tomás, R., Fernández-Caballero, A.: Multi-agent system for knowledge-based event recognition and composition. Expert Syst. 28(5), 488–501 (2011)CrossRefGoogle Scholar
  3. 3.
    Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf. Fusion 50, 92–111 (2019)CrossRefGoogle Scholar
  4. 4.
    Peruzzini, M., Grandi, F., Pellicciari, M.: Benchmarking of tools for user experience analysis in Industry 4.0. Procedia Manuf. 11, 806–813 (2017)CrossRefGoogle Scholar
  5. 5.
    Dajun, Z., Minghui, S., Fei, C., Chih-Min, L., Longzhi, Y., Changjing, S., Changle, Z.: Use of human gestures for controlling a mobile robot via adaptive CMAC network and fuzzy logic controller. Neurocomputing 282, 218–231 (2018)CrossRefGoogle Scholar
  6. 6.
    Hortelano, D., Olivares, T., Ruiz, M.C., Garrido-Hidalgo, C., López, V.: From sensor networks to Internet of Things. Bluetooth Low Energy, a standard for this evolution. Sensors 17(2), 372 (2017)CrossRefGoogle Scholar
  7. 7.
    Roda-Sanchez, L., Garrido-Hidalgo, C., Hortelano, D., Olivares, T., Ruiz, M.C.: OperaBLE: an IoT-based wearable to improve efficiency and smart worker care services in Industry 4.0. J. Sens. 2018, 6272793 (2018)CrossRefGoogle Scholar
  8. 8.
    Garrido-Hidalgo, C., Hortelano, D., Roda-Sanchez, L., Olivares, T., Ruiz, M.C., López, V.: IoT heterogeneous mesh network deployment for human-in-the-loop challenges towards a social and sustainable Industry 4.0. IEEE Access 6, 28417–28437 (2018)CrossRefGoogle Scholar
  9. 9.
    Lund, A.: Measuring usability with the USE questionnaire. Usability and User Experience Newsletter of the STC Usability SIG, vol. 8 (2001)Google Scholar
  10. 10.
    López-Jaquero, V., Montero, F., Molina, J.P., Fernández-Caballero, A., González, P.: Model-based design of adaptive user interfaces through connectors. In: Jorge, J.A., Jardim, N.N., Falcão e Cunha, J. (eds.) Interactive Systems - Design, Specification, and Verification, pp. 245–257. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Neto, P., Pires, J.N., Moreira, A.P.: Accelerometer-based control of an industrial robotic arm. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication, vol. 11, pp. 1192–1197 (2009)Google Scholar
  12. 12.
    Mendes, N., Ferrer, J., Vitorino, J., Safeea, M., Neto, P.: Human behavior and hand gesture classification for smart human-robot interaction. Procedia Manuf. 11, 91–98 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Luis Roda-Sanchez
    • 1
    Email author
  • Teresa Olivares
    • 1
    • 2
  • Arturo S. García
    • 1
    • 2
  • Celia Garrido-Hidalgo
    • 1
  • Antonio Fernández-Caballero
    • 1
    • 2
  1. 1.Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations