Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1006 ))

Included in the following conference series:

Abstract

The characterization of the resistance of transmission towers is a difficult and costly procedure which can be mitigated using statistical techniques. A stratified sampling process based on the characteristic of the terrain was shown in previous works to reduce the error in the statistical inference; however, such characteristics are usually unknown before a measure is made. In this work, we present a system which integrates artificial intelligence techniques, such as k-nearest neighbors, decision trees, or random forests, to automatically optimize the workflow of expert workers using various sources of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, J., Gandhi, K., Kapoor, M., Dwivedi, A.: New approaches for live wire maintenance of transmission lines. MIT Int. J. Electr. Instrum. Eng. 3(2), 67–71 (2013)

    Google Scholar 

  2. Gonçalves, R.S., Carvalho, J.C.M.: Review and latest trends in mobile robots used on power transmission lines. Int. J. Adv. Rob. Syst. 10(12), 408 (2013)

    Article  Google Scholar 

  3. Eltawil, M.A., Zhao, Z.: Grid-connected photovoltaic power systems: technical and potential problems—a review. Renew. Sustain. Energy Rev. 14(1), 112–129 (2010)

    Article  Google Scholar 

  4. Swanson, L.: Linking maintenance strategies to performance. Int. J. Prod. Econ. 70(3), 237–244 (2001)

    Article  Google Scholar 

  5. Ghazvini, M.A.F., Morais, H., Vale, Z.: Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems. Appl. Energy 96, 281–291 (2012)

    Article  Google Scholar 

  6. Smith, C.A., Corripio, A.B., Basurto, S.D.M.: Control automático de procesos: teoría y práctica. Number 968-18-3791-6. 01-A3 LU. AL-PCS. 1. Limusa (1991)

    Google Scholar 

  7. Na, M.G.: Auto-tuned PID controller using a model predictive control method for the steam generator water level. IEEE Trans. Nucl. Sci. 48(5), 1664–1671 (2001)

    Article  Google Scholar 

  8. Krishnanand, K.R., Dash, P.K., Naeem, M.H.: Detection, classification, and location of faults in power transmission lines. Int. J. Electr. Power Energy Syst. 67, 76–86 (2015)

    Article  Google Scholar 

  9. Taher, S.A., Sadeghkhani, I.: Estimation of magnitude and time duration of temporary overvoltages using ANN in transmission lines during power system restoration. Simul. Model. Pract. Theory 18(6), 787–805 (2010)

    Article  Google Scholar 

  10. Higgins, L.R., Mobley, R.K., Smith, R., et al.: Maintenance Engineering Handbook. McGraw-Hill, New York (2002)

    Google Scholar 

  11. Do, P., Voisin, A., Levrat, E., Iung, B.: A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions. Reliab. Eng. Syst. Saf. 133, 22–32 (2015)

    Article  Google Scholar 

  12. Zarnani, A., Musilek, P., Shi, X., Ke, X., He, H., Greiner, R.: Learning to predict ice accretion on electric power lines. Eng. Appl. Artif. Intell. 25(3), 609–617 (2012)

    Article  Google Scholar 

  13. Zhou, D., Zhang, H., Weng, S.: A novel prognostic model of performance degradation trend for power machinery maintenance. Energy 78, 740–746 (2014)

    Article  Google Scholar 

  14. De Faria, H., Costa, J.G.S., Olivas, J.L.M.: A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renew. Sustain. Energy Rev. 46, 201–209 (2015)

    Article  Google Scholar 

  15. Trappey, A.J.C., Trappey, C.V., Ma, L., Chang, J.C.M.: Intelligent engineering asset management system for power transformer maintenance decision supports under various operating conditions. Comput. Ind. Eng. 84, 3–11 (2015)

    Article  Google Scholar 

  16. Weibull, W.: Wide applicability. Int. J. Appl. Mech. 103(730), 293–297 (1951)

    MATH  Google Scholar 

  17. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, vol. 751. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  18. Chakraborti, S., Li, J.: Confidence interval estimation of a normal percentile. Am. Stat. 61(4), 331–336 (2007)

    Article  MathSciNet  Google Scholar 

  19. Chamoso, P., De La Prieta, F., Villarrubia, G.: Intelligent system to control electric power distribution networks. DCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(4), 1–8 (2015)

    Google Scholar 

  20. Chamoso, P., De Paz, J.F., Bajo, J., Villarrubia, G.: Intelligent control of energy distribution networks. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 99–107. Springer (2016)

    Google Scholar 

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the European Regional Development Fund (FEDER) within the framework of the Interreg program V-A Spain-Portugal 2014–2020 (PocTep) under the IOTEC project grant 0123 IOTEC 3 E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernández, G., García-Retuerta, D., Chamoso, P., Rivas, A. (2020). Design of an AI-Based Workflow-Guiding System for Stratified Sampling. In: Novais, P., Lloret, J., Chamoso, P., Carneiro, D., Navarro, E., Omatu, S. (eds) Ambient Intelligence – Software and Applications –,10th International Symposium on Ambient Intelligence. ISAmI 2019. Advances in Intelligent Systems and Computing, vol 1006 . Springer, Cham. https://doi.org/10.1007/978-3-030-24097-4_13

Download citation

Publish with us

Policies and ethics