Machine Perception—Machine Perception MU

  • Zbigniew LesEmail author
  • Magdalena Les
Part of the Studies in Computational Intelligence book series (SCI, volume 842)


In the previous chapter the short survey of the philosophical inquires and psychological research in the human visual perception was outlined.


  1. 1.
    Nevatia R (1982) Machine perception Prentice-Hall. Englewood Cliffs, NJGoogle Scholar
  2. 2.
    Roberts LG (1963) Machine perception of three-dimensional solids. In: Tippett JT et al (eds) Optical and electro-optical information processing. MIT Press, Cambridge, pp 159–197Google Scholar
  3. 3.
    Hochberg J, Brooks V (1962) Pictorial recognition as an unlearned ability: a study of one child’s performance. Am J Psychol 75(4):624–628CrossRefGoogle Scholar
  4. 4.
    Guzman A (1968) Computer recognition of three dimensional objects in a visual scene. Massachusetts Institute of Technology, Ph.D. thesis, Cambridge, MAGoogle Scholar
  5. 5.
    Clowes MB (1971) On seeing things. Artif Intell 2:79–116CrossRefGoogle Scholar
  6. 6.
    Huffman DA (1971) Impossible objects as nonsense sentences. Mach Intell 6:295–323Google Scholar
  7. 7.
    Waltz D (1975) Understanding line drawings of a scene with shadows. In: Winston PH (ed) The psychology of computer vision. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    Shimshoni I, Ponce J (1994) Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. In: CVPR, pp 514-519Google Scholar
  9. 9.
    Grimstead IJ (1997) Interactive sketch input of boundary representation solid models. Cardiff UniversityGoogle Scholar
  10. 10.
    Varley PAC, Martin RR (2000) A system for constructing boundary representation solid models from a two-dimensional sketch. In: GMP. IEEE PressGoogle Scholar
  11. 11.
    Varley PAC, Martin RR (2001) The junction catalogue for labelling line drawing of polyhedra with tetrahedral vertices. Int J Shape Modell 7(1):23–44CrossRefGoogle Scholar
  12. 12.
    Mackworth AK (1973) Interpreting pictures of polyhedral scenes. Artif Intell 4:121–137CrossRefGoogle Scholar
  13. 13.
    Draper SW (1980) Reasoning about depth in line-drawing interpretation. Sussex UniversityGoogle Scholar
  14. 14.
    Parodi P, Lancewicki R, Vijh A, Tsotsos JK (1998) Empirically-derived estimates of the complexity of labelling line drawing of polyhedral scenes. Artif Intell 105:47–75zbMATHCrossRefGoogle Scholar
  15. 15.
    Sugihara K (1986) Machine interpretation of line drawings. MIT Press, CambridgeGoogle Scholar
  16. 16.
    Marr D, Nishihara K (1978) Representation and recognition of the spatial organization of three dimensional shapes. Proc R Soc Lond Ser B 200:269–294CrossRefGoogle Scholar
  17. 17.
    Humphreys GW, Quinlan PT (eds) (1987) Normal and pathological processes in visual object constancy. Visual object processing: a cognitive neuropsychological approach. Erlbaum, LondonGoogle Scholar
  18. 18.
    Rock I (1973) Orientation and form. Academic Press, New YorkGoogle Scholar
  19. 19.
    Ratcliff G, Newcombe F (1982) Object recognition: some deductions from the clinical evidence. In: Ellis AW (ed) Normality and pathology in cognitive functions. Academic Press, LondonGoogle Scholar
  20. 20.
    Riddoch MJ, Humphreys GW (1987) A case of integrative visual agnosia. Brain 110:1431–1462CrossRefGoogle Scholar
  21. 21.
    Warren CEJ, Morton J (1982) The effects of priming on picture naming. Br J Psychol 73:117–130CrossRefGoogle Scholar
  22. 22.
    Fischler M, Elschlager R (1973) The representation and matching of pictorial structures. IEEE Trans Comput 100(22):67–92CrossRefGoogle Scholar
  23. 23.
    Kanade T (1977) Computer recognition of human faces. Birkhauser, BaselCrossRefGoogle Scholar
  24. 24.
    Yuille A (1991) Deformable templates for face recognition. J Cogn Neurosci 3(1):59–70MathSciNetCrossRefGoogle Scholar
  25. 25.
    Moghaddam B, Pentland A (1997) Probabilistic visual learning for object representation. IEEE Trans Pattern Anal Mach Vis 19(7):696–710CrossRefGoogle Scholar
  26. 26.
    Heisele B, Ho P, Wu J, Poggio T (2003) Face recognition: component-based versus global approaches. Comput Vis Image Underst 91(1–2):6–21CrossRefGoogle Scholar
  27. 27.
    Heisele B, Serre T, Poggio T (2007) A component-based framework for face detection and identification. Int J Comput Vis 74(2):167–181CrossRefGoogle Scholar
  28. 28.
    Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. Paper presented at the IEEE computer society conference on computer vision and pattern recognition (CVPR 2008), Anchorage, AKGoogle Scholar
  29. 29.
    Fergus R (2007b) Part-based models, (CVPR 2008)Google Scholar
  30. 30.
    Fergus R (2009) Classical methods for object recognition. ICCV, Kyoto, JapanGoogle Scholar
  31. 31.
    Felzenszwalb PF, Huttenlocher DP (2006) Efficient belief propagation for early vision. Int J Comput Vis 70(1):41–54CrossRefGoogle Scholar
  32. 32.
    Oliva A, Torralba A (2005) Building the gist of a scene: the role of global image features in recognition. Prog Brain Res 155:23–36CrossRefGoogle Scholar
  33. 33.
    Divvala SK, Hoiem DW, Hays JH, Efros AA, Hebert M (2009) An empirical study of context in object detection. In: IEEE computer society conference on computer vision and pattern recognition workshop (CVPR), Miami, FL. IEEE Computer Society, pp 1271–1278Google Scholar
  34. 34.
    Torralba A, Freeman WT, Fergus R (2008) 80 million tiny images: a large dataset for non-parametric object and scene recognition. IEEE Trans Pattern Anal Mach Intell 30(11):1958–1970CrossRefGoogle Scholar
  35. 35.
    Lazebnik S, Schmid Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognition natural scene categories. In: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06). IEEE Computer Society, pp 2169–2178Google Scholar
  36. 36.
    Russell BC, Torralba A, Liu C, Fergus R, Freeman WT (2007) Object recognition by scene alignment. Paper presented at the conference on neural information processing systems (NIPS)Google Scholar
  37. 37.
    Malisiewicz T, Efros AA (2008) Recognition by association via learning per-exemplar distances. CVPRGoogle Scholar
  38. 38.
    Murphy K, Torralba A, Freeman W (2003) Using the forest to see the tree: a graphical model relating features, objects and the scenes. In: Conference on neural information processing systems (NIPS)Google Scholar
  39. 39.
    Torralba A (2003) Contextual priming for object detection. Int J Comput Vis (IJCV) 53(2):169–191CrossRefGoogle Scholar
  40. 40.
    Torralba A, Murphy K, Freeman W, Rubin M (2003) Context-based vision system for place and object recognition. Paper presented at the international conference on computer vision (ICCV 2003). Nice, FranceGoogle Scholar
  41. 41.
    Verbeek J, Triggs B (2008) Scene segmentation with CRFs learned from partially labelled images. In: Conference on neural information processing systems (NIPS)Google Scholar
  42. 42.
    Palmer S (1975) Visual perception and world knowledge: notes on a model of sensory-cognitive interaction. In: Norman D, Rumelhart D (ed) Explorations in cognition. Freeman, San Francisco, pp 279–307Google Scholar
  43. 43.
    Sinha P, Torralba A (2002) Detecting faces in impoverished images. J Vis 2(7):601CrossRefGoogle Scholar
  44. 44.
    Carbonetto P, de Freitas N, Barnard K (2004) A statistical model for general contextual object recognition. In: European conference on computer vision (ECCV), 2004, pp 350–362Google Scholar
  45. 45.
    Fink M, Perona P (2003) Mutual boosting for contextual inference. In: Conference on neural information processing systems (NIPS)Google Scholar
  46. 46.
    He X, Zemel RS, Carreira-Perpinan MA (2004) Multiscale conditional random fields for image labelling. In: Conference on computer vision and pattern recognition (CVPR), 2004. pp 695–702Google Scholar
  47. 47.
    Kruppa H, Schiele B (2003) Using local context to improve face detection. In: British machine vision conference (BMVC)Google Scholar
  48. 48.
    Shotton J, Winn J, Rother C, Criminisi A (2007) Text on boost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context. Int J Comput Vis (IJCV)Google Scholar
  49. 49.
    Kumar S, Hebert M (2005) A hierarchical field framework for unified context-based classification. In: International conference on computer vision (ICCV) 2005, pp 1284–1291Google Scholar
  50. 50.
    Lipson P, Grimson E, Sinha P (1997) Configuration based scene classification and image indexing. In: Conference on computer vision and pattern recognition (CVPR), 1997, p 1007Google Scholar
  51. 51.
    Singhal A, Luo J, Zhu W (2003) Probabilistic spatial context models for scene content understanding. In: Conference on computer vision and pattern recognition (CVPR), 2003, p 235Google Scholar
  52. 52.
    Galleguillos C, Rabinovich A, Belongie S (2008) Object categorization using cooccurrence, location and appearance. Paper presented at the conference on computer vision and pattern recognition (CVPR)Google Scholar
  53. 53.
    Hanson A, Riseman E (1978) Visions: a computer system for interpreting scenes. In: Hanson A, Riseman E (eds) Computer vision systems. Academic Press, New York, pp 303–333Google Scholar
  54. 54.
    Rabinovich A, Vedaldi A, Galleguillos C, Wiewiora E, Belongie S (2007) Objects in context. In: Proceedings of the international conference on computer vision (ICCV)Google Scholar
  55. 55.
    Strat T, Fischler M (1991) Context-based vision: recognizing objects using information from both 2-d and 3-d imagery. Pattern Anal Mach Vis 13(10):1050–1065CrossRefGoogle Scholar
  56. 56.
    Torralba A, Murphy KP, Freeman WT (2004) Contextual models for object detection using boosted random fields. Paper presented at the conference on neural information processing systems (NIPS)Google Scholar
  57. 57.
    Wolf L, Bileschi S (2006) A critical view of context. Int J Comput Vis (IJCV)Google Scholar
  58. 58.
    Tsotsos JK, Mylopoulos J, Covvey HD, Zucker SW (1980) A framework for visual motion understanding. IEEE Trans Pattern Anal Mach Intell 2(6):563–573CrossRefGoogle Scholar
  59. 59.
    Brooks R (1981) Symbolic reasoning among 3-dimensional models and 2-dimensional images. Artif Intell 17:285–349CrossRefGoogle Scholar
  60. 60.
    Draper BA, Collins RT, Brolio J, Hanson AR, Riseman EM (1989) The schema system. Int J Comput Vis 2:209–250CrossRefGoogle Scholar
  61. 61.
    Matsuyama T, Hwang V (1990) SIGMA: a knowledge-based aerial image understanding system. Plenum Press, New YorkCrossRefGoogle Scholar
  62. 62.
    Dillon C, Caelli T (1997) Cite—scene understanding and object recognition. In: Caelli T, Bishof WF (eds) Machine learning and scene interpretation. Plenum Publishing Cooperation, New York, pp 119–187CrossRefGoogle Scholar
  63. 63.
    Dance S, Caelli T (1997) Soo-pin: picture interpretation networks. In: Caelli T, Bishof WF (eds) Advances in computer vision and machine intelligence. Plenum Publishing Cooperation, New York, pp 225–254CrossRefGoogle Scholar
  64. 64.
    Salzbrunn R (1997) Wissensbasierte Erkennung und Lokarisierung von objekten. Shaker Verlag, AachenGoogle Scholar
  65. 65.
    Glasgow J, Narayanan NH, Chandrasekaran B (eds) (1995) Diagrammatic reasoning: cognitive and computational perspectives. The MIT Press, CambridgeGoogle Scholar
  66. 66.
    Anderson M, Meyer B, Olivier P (eds) (2002) Diagrammatic representation and reasoning. Springer, LondonzbMATHGoogle Scholar
  67. 67.
    Michalski RS (1983) A theory and methodology of inductive learning. In: Michalski RS, Carbonell JG, Mitchel TM (eds) Machine learning: an artificial intelligence approach. Tioga Publishing, Palo Alto, pp 83–133CrossRefGoogle Scholar
  68. 68.
    Rosch E, Braem PB (1976) Basic objects in natural categories. Cogn Psychol 8:382–439CrossRefGoogle Scholar
  69. 69.
    Behl-Chadha G (1996) Basic-level and superordinate-like categorical representations in early infancy. Cognition 60:105–141CrossRefGoogle Scholar
  70. 70.
    Markman EM (1989) Categorization and naming in children: problems of induction. MIT Press, CambridgeGoogle Scholar
  71. 71.
    Wasserman EA, Astley SL (1994) A behavioral analysis of concepts: Its application to pigeons and children. In: Medin DL (ed) Psychology of learning and motivation. Academic Press, San Diego, pp 73–132Google Scholar
  72. 72.
    Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504CrossRefGoogle Scholar
  73. 73.
    Jolicoeur P, Landau MJ (1984) Effects of orientation on the identification of simple visual patterns. Can J Psychol 38:80–93CrossRefGoogle Scholar
  74. 74.
    Farah MJ, Tanaka JW, Drain HM (1995) What causes the face inversion effect? J Exp Psychol: Hum Percept Perform 21:628–634Google Scholar
  75. 75.
    Marsolek CJ (1999) Dissociable neural subsystems underlie abstract and specific object recognition. Psychol Sci 10(2):111–118CrossRefGoogle Scholar
  76. 76.
    Op de Beeck H, Béatse E, Wagemans J, Sunaert S, Van Hecke P (2000) The representation of shape in the context of visual object categorization tasks. Neuroimage 12:28–40CrossRefGoogle Scholar
  77. 77.
    Palmer SE (1975) The effects of contextual scenes on the identification of objects. Memory and cognitionGoogle Scholar
  78. 78.
    Bar M, Ullman S (1993) Spatial context in recognition. Perception 25:343–352CrossRefGoogle Scholar
  79. 79.
    Parikh D, Zitnick C, Chen T (2008) From appearance to context-based recognition: Dense labelling in small images. Paper presented at the conference on computer vision and pattern recognition (CVPR)Google Scholar
  80. 80.
    Requicha AG (1980) Representations for rigid solids: theory, methods, and systems. ACM Comput Surv 12(4):437–464CrossRefGoogle Scholar
  81. 81.
    Badler N, Bajscy R (1978) Three-dimensional representation for computer graphics and vision. ACM SIGGRAPH Comput GraphGoogle Scholar
  82. 82.
    Baumgart BG (1972) Winged edge polyhedron representation. Technical report. Stanford UniversityGoogle Scholar
  83. 83.
    Coons SA (1974) Surface patches and B-spline Curves. In: Computer aided geometric design. Academic Press, pp 1–16Google Scholar
  84. 84.
    Koenderink J, van Doorn A (1986) Dynamic shape. Biol Cybern 53:383–396MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Biederman I (1987) Recognition by components: a theory of human image understanding. Psychol Rev 94:115–147CrossRefGoogle Scholar
  86. 86.
    Palmer S, Nelson R (2000) Late influences on perceptual grouping: illusory figures. Percept Psychophys 62(7):1321–1331CrossRefGoogle Scholar
  87. 87.
    Chakravarty I, Freeman H (1982) Characteristic view as a basis for three-dimensional object recognition. In: Conference of international society for optical engineering 1982Google Scholar
  88. 88.
    Winston P (1975) Learning structural descriptions from examples. In: Winston PH (ed) Psychology of computer vision. McGraw Hill, New YorkGoogle Scholar
  89. 89.
    Connell J, Brady M (1987) Generating and generalizing models of visual objects. Artif Intell 3:159–183CrossRefGoogle Scholar
  90. 90.
    Dong G, Yanaguchi T, Yagi Y, Yachida M (1994) Shape concept learning from examples and explanation. Comput Vis 87–8(8):57–64Google Scholar
  91. 91.
    Haar RL (1982) Sketching: estimating object positions from relational descriptions. Comput Graph Image Process 19:227–247CrossRefGoogle Scholar
  92. 92.
    Ueda N, Suzuki S (1993) Leaning visual modes from shape contours using multiscale convex/concave structure matching. IEEE Trans Pattern Anal Mach Intellig PAMI-15(4):337–352CrossRefGoogle Scholar
  93. 93.
    Arnheim R (1970) Visual thinking. Faber and Faber, LondonGoogle Scholar
  94. 94.
    Kellman P, Shipley T (1990) Visual interpolation in object perception: a computational theory (manuscript). New YorkGoogle Scholar
  95. 95.
    Briscoe RE (2011) Mental imagery and the varieties of a modal perception. Pac Philos QGoogle Scholar
  96. 96.
    Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt. Psychologische Forschung 4:301–350CrossRefGoogle Scholar
  97. 97.
    Koffka K (1962) Principles of gestalt psychology. Routledge & Kegan Paul, LondonGoogle Scholar
  98. 98.
    Kanizsa C (1979) Organization in vision. New YorkGoogle Scholar
  99. 99.
    Kanizsa G (1979) Organization in vision. Essays on gestalt perception. Praeger, New YorkGoogle Scholar
  100. 100.
    Kanizsa G (1985) Seeing and thinking. Acta Psychol 59:23–33CrossRefGoogle Scholar
  101. 101.
    Kellman PJ, Shipley TF (1991) A theory of visual interpolation in object perception. Cogn Psychol 23:141–221CrossRefGoogle Scholar
  102. 102.
    Boselie F, Wouterlood D (1992) A critical discussion of Kellman and Shipley’s (1991) theory of occlusion phenomena. Psychol Res 54:278–285CrossRefGoogle Scholar
  103. 103.
    Wouterlood D, Boselie F (1992) A good-continuation model of some occlusion phenomena. Psychol Res 54:267–277CrossRefGoogle Scholar
  104. 104.
    Hochberg J, McAlister E (1953) A quantitative approach to figural ‘goodness’. J Exp Psychol 46:361–364CrossRefGoogle Scholar
  105. 105.
    Leeuwenberg E (1969) Quantitative specification of information in sequential patterns. Psychol Rev 16:216–220CrossRefGoogle Scholar
  106. 106.
    Leeuwenberg E (1971) A perceptual coding language for visual and auditory patterns. Psychol Rev 76:307–349Google Scholar
  107. 107.
    Buffart H, Leeuwenberg E, Restle F (1981) Coding theory of visual pattern completion. J Exp Psychol Hunan Percept Perform 7:241–274CrossRefGoogle Scholar
  108. 108.
    Buffart H, Leeuwenberg E, Restlem F (1983) Analysis of ambiguity in visual pattern completion. J Exp Psychol Hunan Percept Perform 9:980–1000CrossRefGoogle Scholar
  109. 109.
    Sekuler AB (1994) Local and global minima in visual completion: effects of symmetry and orientation. Perception 23:529–545CrossRefGoogle Scholar
  110. 110.
    van Lier RL, van der Helm P (1995a) Multiple completions primed by occlusion patterns. Perception 24:727–740CrossRefGoogle Scholar
  111. 111.
    van Lier R, Wagemans J (1999) From images to objects: global and local completions of self-occluded parts. J Exp Psychol Hum Percept Perform 25:1721–1741Google Scholar
  112. 112.
    Rock I (1983) The logic of perception. The MIT Press, CambridgeGoogle Scholar
  113. 113.
    Boselie F (1988) Local versus global minima in visual pattern completion. Percept Psychophys 43:431–445CrossRefGoogle Scholar
  114. 114.
    Van Lier R, Van der Helm, Leeuwenberg E (1994) Integrating global and local aspects of visual occlusion. Perception 23:883–903CrossRefGoogle Scholar
  115. 115.
    Lier RHP, Leeuwenberg E (1995) ) Competing global and local completions in visual occlusion. J Experiential Psychol Hum Percept Perform 21:571–583CrossRefGoogle Scholar
  116. 116.
    Shipley TF, Kellman PJ (1992) Perception of partly occluded objects and illusory figures: evidence for an identity hypothesis. J Experimental Psychol Hum Percept Perform 18:106–120CrossRefGoogle Scholar
  117. 117.
    Yin C, Kellman PJ, Shipley TF (1997) Surface completion complements boundary interpolation in the visual integration of partly occluded objects. Perception 26:1459–1479CrossRefGoogle Scholar
  118. 118.
    Rubin N (2001) The role of junctions in surface completion and contour matching. Perception 30:339–366CrossRefGoogle Scholar
  119. 119.
    de Wit CJ, van Lier RJ (2002) Global visual completion of quasi-regular shapes. Perception 31:969–984CrossRefGoogle Scholar
  120. 120.
    Albert MK (2007) Occlusion, transparency, and lightness. Vis Res 47:3061–3069CrossRefGoogle Scholar
  121. 121.
    Anderson B, Winawer J (2005) Image segmentation and lightness perception. Nature 434:79–83CrossRefGoogle Scholar
  122. 122.
    Adelson EH (1993) Perceptual organization and the judgement of brightness. Science 262:2042–2044CrossRefGoogle Scholar
  123. 123.
    Adelson EH (2000) Lightness perception and lightness illusions. In: Gazzaniga M (ed) The new cognitive neuroscience. MIT Press, Cambridge, pp 339–351Google Scholar
  124. 124.
    Metelli F (1974) The perception of transparency. Sci Am 230:90–98CrossRefGoogle Scholar
  125. 125.
    Arnheim R (1974) Art and visual perception. A psychology of the creative eye. University of California Press, BerkeleyGoogle Scholar
  126. 126.
    Schumann F (1904) Einige Beobachtungen uber die Zusammenfassung von Gesichtseindriicken zu Einheiten. Psychologische Studien 1:1–3Google Scholar
  127. 127.
    Kanizsa G (1955) Marzini quasi-percettivi in campi con stimolazione omogenea. Riv di psicologia 49:7–30Google Scholar
  128. 128.
    Julesz B (1964) Binocular depth perception without familiarity cues. Science 145:356–362CrossRefGoogle Scholar
  129. 129.
    Coren S (1972) Subjective contours and apparent depth. Psychol Rev 79(4):3S9–367CrossRefGoogle Scholar
  130. 130.
    Parks TE (1984) Illusory figures: a (mostly) theoretical review. Psychol Bull 95:282–300CrossRefGoogle Scholar
  131. 131.
    Pritchard WS, Warm JS (1983) Attentional processing and the subjective contour illusion. J Exp Psychol 112:145–175CrossRefGoogle Scholar
  132. 132.
    Grossberg S, Mingolla E (1985) Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychol Rev 92:173–211CrossRefGoogle Scholar
  133. 133.
    Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San FranciscoGoogle Scholar
  134. 134.
    Saund E (1999) Perceptual organization of occluding contours of opaque surfaces. Comput Vis Image Underst 76(1):70–82CrossRefGoogle Scholar
  135. 135.
    Kogo N, Drozdzewska A, Zaenen P, Alp N, Wagemans J (2014) Depth perception of illusory surfaces. Vis Res 96:58–64CrossRefGoogle Scholar
  136. 136.
    Kogo N, Strecha C, Van Gool L, Wagemans J (2010) Surface construction by a 2-D differentiation–integration process: a neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychol Rev 117(2):406–439CrossRefGoogle Scholar
  137. 137.
    Arnheim R (1954) Art and visual perception: a psychology of the creative eyeGoogle Scholar
  138. 138.
    Les Z, Les M (2008) Shape understanding system. The first steps toward the visual thinking machines. Stud Comput Intell. Springer, BerlinzbMATHCrossRefGoogle Scholar
  139. 139.
    Les Z, Les M (2013) Shape understanding system—knowledge implementation and learning. Studies in computational intelligence. Springer, BerlinGoogle Scholar
  140. 140.
    Les Z, Les M (2015) Shape understanding system—machine understanding and human understanding. Studies in computational intelligence. Springer, BerlinGoogle Scholar
  141. 141.
    Koffka K (1935) Principles of gestalt psychology. Harcourt Brace, JovanovicGoogle Scholar
  142. 142.
    Weisberg R, Alba J (1982) Problem solving is not like perception: more on Gestalt theory. J Exp Psychol 111(3):326–330CrossRefGoogle Scholar
  143. 143.
    Schwering A, Krumnack U, Kühnberger KW, Gust H (2007) Using gestalt principles to compute analogies of geometric figures. In: 2007. Nashville, TNGoogle Scholar
  144. 144.
    Lowe D (1985) Perceptual organization and visual recognition. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  145. 145.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Image net classification with deep convolutional neural networks. Paper presented at the NIPSGoogle Scholar
  146. 146.
    Warrington EK, Taylor AM (1978) Two categorical stages of object recognition. Perception 7(6):695–705CrossRefGoogle Scholar
  147. 147.
    Les Z (2001) Shape understanding. Possible classes of shapes. Int J Shape Modell 7(1):75–109CrossRefGoogle Scholar
  148. 148.
    Les Z (1996) An aesthetic evaluation method based on image understanding approach. In: The first international conference on visual information systems VISUAL’96, Melbourne, 5–6 Feb 1996. VUT, pp 317–327Google Scholar
  149. 149.
    Biederman I, Mezzanotte RJ, Rabinowitz JC (1982) Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14(2):143–177CrossRefGoogle Scholar
  150. 150.
    Les Z, Les M (2018) Machine understanding—testing visual understanding ability of machine: the visual intelligence test. Int J Underst 7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The St. Queen Jadwiga Research Institute of UnderstandingToorak, MelbourneAustralia

Personalised recommendations