Skip to main content

Synthesis of FIR Filters

  • Chapter
  • First Online:
Digital Filters Using MATLAB

Abstract

In this chapter, we discuss the design of digital filters with finite-length impulse response using windowing and more important using iterative optimisation, i.e., mini-max design of linear-phase as well as nonlinear-phase filters, e.g., special cases as minimum-phase, half-band and Nyquist FIR filters, differentiators and Hilbert transformers. We discuss concepts like zero-phase response, delay- and allpass-complementary filter pairs, which have reduced realisation cost. Finally, we demonstrated the design of FIR filters with a least squares approximation using linear programming and quadratic programming. The chapter contains 27 solved examples.

The additional materials will be available on https://www.springer.com/in/book/9783030240622.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After the Austrian, nineteenth century meteorologist, Julius van Hann. He is seen as the father of modern meteorology.

  2. 2.

    Richard W. Hamming (1915–1998).

  3. 3.

    Note that \({\text{wT}}\) should be normalized with respect to half the sampling frequency in the function firpmord. Hence, \({\text{wT}}\) should be divided by π, i.e., \([{\text{N, Be, D, W}}] = {\text{firpmord}}\,\,({\text{wT}}/{\text{pi, b, d}})\) Alternatively we may write [N, Be, D, W] = firpmord (wT, b, d, 2*pi) where b specifies the desired magnitude in the different bands, e.g., b = [1 0] and d specifies the maximum ripples allowable in each band, e.g., d = [δc δs] = [0.01 0.001].

  4. 4.

    Note that in MATLAB the first element in the vector h is element 1. Hence, this element corresponds to the first value in the impulse response, i.e., h(1)h(0).

References

  1. Elliott, D.F. (ed.): Handbook of Digital Signal Processing. Academic Press, Engineering Applications (1988)

    Google Scholar 

  2. Proakis, J.G., Manolakis D.G.: Digital Signal Processing, Principles, Algorithms, and Applications, Third edn, Prentice Hall (1996)

    Google Scholar 

  3. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall, Englewood Cliffs, N.J. (1975)

    Google Scholar 

  4. Fliege, N.J.: Multirate Digital Signal Processing. Wiley (1994)

    Google Scholar 

  5. Ramstad, A.T.: Digital two-rate IIR and hybrid IIR/FIR filters for sampling rate conversion. IEEE Trans. Commun. 30(7), 1466–1476 (1982)

    Article  Google Scholar 

  6. Ramstad, A.T.: Digital methods for conversion between arbitrary sampling frequencies. IEEE Trans. Acoust. Speech, Signal Process. 32(3), 577–591 (1984)

    Article  Google Scholar 

  7. Ramstad, A.T., Saramäki, T.: Efficient multirate FIR filter structures for narrow transition band FIR filters. In: IEEE International Symposium on Circuits and Systems, ISCAS-88, Espoo, Finland, Vol. 3, pp. 2019–2022 (1988)

    Google Scholar 

  8. Ramstad, T.A., Saramäki, T.: Multistage, multirate FIR filter structures for narrow transition-band filters. On: IEEE International Symposium on Circuits and Systems, ISCAS-90, Vol. 3, pp. 2017–2021, New Orleans, LA, 1–3 May 1990

    Google Scholar 

  9. McClellan, J.H., Parks, T.W., Rabiner, L.R.: A computer program for designing optimum FIR linear phase digital filters. IEEE Trans Audio Electroacoust. 21(6), 506–526 (1973)

    Article  Google Scholar 

  10. Bellanger, M.: Digital Processing of Signals, 3rd edn. John Wiley & Sons, Chichester, England (2000)

    MATH  Google Scholar 

  11. DeFatta, D.J., Lucas, J.G., Hodgkiss, W.S.: Digital Signal Processing: a System Design Approach. Wiley (1988)

    Google Scholar 

  12. Ingle, V.K., Proakis, J.G.: Digital Signal Processing Using MATLAB. Brooks/Cole Publ. (2000)

    Google Scholar 

  13. Mitra, S.K., Kaiser, J.F. (eds.): Handbook for Digital Signal Processing. Wiley (1993)

    Google Scholar 

  14. Taylor, F.J.: Digital Filter Design Handbook. Marcel Dekker, New York (1983)

    Google Scholar 

  15. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  16. Mitra, S.K.: Digital Signal Processing. McGraw-Hill, A Computer Based Approach (2006)

    Google Scholar 

  17. Hamming, R.W.: Digital Filters. Prentice-Hall, Englewood Cliffs, N.J. (1977)

    Google Scholar 

  18. Kaiser, J.F.: Nonrecursive digital filter design using I0-sinh window function. In: Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS´74, pp. 20–23 (1974)

    Google Scholar 

  19. Ifeachor, E.C., Jervis, B.W.: Digital Signal Processing, A Practical Approach. Addison-Wesley (2002)

    Google Scholar 

  20. Schüssler, H.W. (Toolbox to): http://www.springer.com/engineering/signals/book/978-3-540-78250-6

  21. Herrmann, O., Rabiner, R.L., Chan, D.S.K.: Practical design rules for optimum finite impulse response digital filters. Bell Tech. J. 52(6), 769–799 (1973)

    Article  Google Scholar 

  22. MATLAB: Signal Processing Toolbox. http://se.mathworks.com/help/signal/

  23. Ichige, K., Iwaki, M., Ishii, R.: Accurate estimation of minimum filter length for optimum FIR digital filters. IEEE Trans. Circuits Syst. Part II 47(10), 1008–1016 (2000)

    Article  Google Scholar 

  24. Mintzer, F., Liu, B.: Practical design rule for optimum FIR bandpass digital filters. IEEE Trans. Acoust. Speech, Signal Process. 27(2), 204–206 (1979)

    Article  Google Scholar 

  25. Ahsan, M., Saramäki, T.: A MATLAB based optimum multibands FIR filters design program following the original idea of the Remez multiple exchange algorithm. IEEE International Symposium on Circuits and Systems, ISCAS-11, Rio de Janeiro, Brazil, pp. 137–140, 15–18 May 2011

    Google Scholar 

  26. Parks, T.W., McClellan, J.H.: A program for design of linear phase finite impulse response digital filters. IEEE Trans. Audio Electroacoust. 20(3), 195–199 (1972)

    Article  Google Scholar 

  27. Antoniou, A.: Digital Filters, Analysis, Design and Applications, 2nd Edn. McGraw-Hill (1993)

    Google Scholar 

  28. Chen, C.H. (ed.): Signal Processing Handbook. Marcel Dekker, New York (1988)

    Google Scholar 

  29. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall (1989)

    Google Scholar 

  30. Parks, T.W., Burrus, C.S.: Digital Filter Design. Wiley (1987)

    Google Scholar 

  31. Zahradnik, P., Vlcek, M.: Fast analytical design algorithms for FIR notch filters. IEEE Trans. Circuits Syst. Part I 51(3), 608–623 (2004)

    Article  Google Scholar 

  32. Zahradnik, P., Vlcek, M.: Note on the design of an equiripple DC-notch FIR filter. IEEE Trans. Circuits Syst. Part II 54(2) (2007)

    Article  Google Scholar 

  33. Ansari, R.: Satisfying the Haar condition in halfband FIR filter design. IEEE Trans. Acoust. Speech, Signal Process. 36(1), 123–124 (1988)

    Article  Google Scholar 

  34. Vaidyanathan, P.P., Nguyen, T.Q.: A ‘trick’ for design of FIR half-band filters. IEEE Trans. Circuits Syst. 34(3), 297–300 (1987)

    Article  Google Scholar 

  35. MATLAB.: Filter Design Toolbox User’s Guide. The MathWorks (2001)

    Google Scholar 

  36. Willson, A.N., Orchard, H.J.: A design method for half-band FIR filters. IEEE Trans. Circuits Syst. Part I 45(1), 95–101 (1999)

    Article  MATH  Google Scholar 

  37. Johansson, H., Saramäki, T.: A class of complementary IIR filters. IEEE International Symposium on Circuits and Systems, ISCAS-99, Vol. 3, pp. 299–302, May 30–June 2 1999

    Google Scholar 

  38. Milić, L., Saramäki, T.: Three classes of IIR complementary filter pairs with an adjustable cossover frequency. In: Proceedings of the IEEE International Symposium Circuits Systems ISCAS-03, Vol. 4, pp. 145–148 (2003)

    Google Scholar 

  39. Milić, L., Saramäki, T.: Power-complementary IIR filter pairs with an adjustable crossover frequency. Elecron. Energ. (Facta Universitatis Series) 16(3), 295–304 (2003)

    Google Scholar 

  40. Madisetti, V.K., Williams, D.B.: The Digital Signal Processing Handbook. CRC Press, New York (1998)

    Google Scholar 

  41. Koilpillai, R.D., Vaidyanathan, P.P.: A spectral factorization approach to pseudo-QMF design. IEEE Trans. Signal Process. 41(1), 82–92 (1993)

    Article  MATH  Google Scholar 

  42. Mian, G., Nainer, A.: A fast procedure to design equiripple minimum-phase FIR filter. IEEE Trans. Circuits Syst. 29(5), 327–331 (1982)

    Article  Google Scholar 

  43. Sheikh, Z.U., Eghbali, A., Johansson, H.: Linear-phase FIR digital differentiator order estimation. In: Proceedings of the 20th European Conference on Circuit Theory and Design, ECCTD, pp. 310–313, Linköping, Sweden (2011)

    Google Scholar 

  44. Abbas, M., Qureshi, F., Sheikh, Z., Gustafsson, O., Johansson, H., Johansson, K.: Comparison of multiplierless implementation of nonlinear-phase versus linear-phase FIR filters. In: Asilomar Conference on Signals, Systems and Computers, pp. 598–601, Pacific Grove, CA, 26–29 Oct 2008

    Google Scholar 

  45. Herrmann, O., Schüssler, H.W.: Design of nonrecursive digital filters with minimum phase. Electron. Lett. 6(11), 329–330 (1970)

    Article  Google Scholar 

  46. Lim, J.E., Oppenheim, A.V. (eds.): Advanced Topics in Signal Processing. Prentice-Hall, Englewood Cliffs, N.J. (1988)

    MATH  Google Scholar 

  47. Chit, N.N., Mason, J.S.: Design of minimum phase FIR digital filters. In: Proceedings of the IEE G, Electronic Circuits Systems, (UK), Vol. 135, No. 6, pp. 258–264 (1988)

    Article  Google Scholar 

  48. Chen, C.H. (ed.): The Circuits and Filters Handbook, 2nd edn. CRC Press, New York (2002)

    Google Scholar 

  49. Le-Bihan, J.: Maximally linear FIR digital differentiators. Circuits Syst. Signal Process. 14(5), 633–637 (1995)

    Article  MATH  Google Scholar 

  50. Vaidyanathan, P.P., Nguyen, T.Q.: Eigenfilters: A new approach to least squares FIR filter design and applications including Nyquist filters. IEEE Trans. Circuits Syst. 34(1), 11–23 (1987)

    Article  Google Scholar 

  51. Pei, S.-C., Shyu, J.-J.: Design of FIR Hilbert transformers and differentiators by eigenfilter. IEEE Trans. Circuits Syst. 35(11), 1457–1461 (1988)

    Article  MathSciNet  Google Scholar 

  52. Selesnick, I.W.: Maximally flat low-pass digital differentiators. IEEE Trans. Circuits Syst. Part II 49(3), 219–223 (2002)

    Article  Google Scholar 

  53. Selesnick, I.W., Burrus, C.S.: Exchange algorithms for the design of linear phase FIR filters and differentiators having flat monotonic passbands and equiripple stopbands. IEEE Trans. Circuits Syst. Part II 43(9), 671–675 (1996). http://www.ece.rice.edu/dsp/software/fir.shtml

    Article  Google Scholar 

  54. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House Books (1997)

    Google Scholar 

  55. Burrus, C.S.: Multiband least squares FIR filter design. IEEE Trans. Signal Process. 43(2), 412–421 (1995)

    Article  MathSciNet  Google Scholar 

  56. MATLAB.: Optimization Toolbox User’s Guide. http://uk.mathworks.com/help/ pdf_doc/optim/optim_tb.pdf

  57. Foulds, L.R.: Optimization Techniques: an Introduction. Springer-Verlag, New York (1981)

    Book  MATH  Google Scholar 

  58. Nash, S.G., Sofer, A.: Linear and Nonlinear Programming. McGraw-Hill (1996)

    Google Scholar 

  59. Herrmann, O.: On the approximation problem in nonrecursive digital filter design. IEEE Trans. Circuit Theory 18(3), 411–413 (1971)

    Article  Google Scholar 

  60. Fettweis, A.: A simple design of maximally flat delay digital filters. IEEE Trans. Acoustics Speech Signal Process. 20(2), 112–114 (1972)

    Article  Google Scholar 

  61. Gopinath, R.A.: Lowpass delay filters with flat magnitude and group delay constraints. IEEE Trans. Signal Process. 51(1), 182–192 (2003)

    Article  Google Scholar 

  62. Vaidyanathan, P.P.: Optimal design of linear-phase FIR digital filters with very flat passbands and equiripple stopbands. IEEE Trans. Circuits Syst. 32, 904–916 (1985)

    Article  Google Scholar 

  63. Saramäki, T., Renfors, M.: A novel approach for the design of IIR filters as a tapped cascaded interconnection of identical allpass subfilters. IEEE International Symposium on Circuits and Systems, ISCAS-87, Vol. 2, pp. 629–632, Philadelphia, 4–7 May 1987

    Google Scholar 

  64. Saramäki, T.: Design of FIR filters as a tapped cascade interconnection of identical sub-filters. IEEE Trans. Circuits Syst. 34(9), 1011–1029 (1987)

    Article  Google Scholar 

  65. Vaidyanathan, P.P.: Efficient and multiplier-less design of FIR filters with very sharp cutoff via maximally flat building blocks. IEEE Trans. Circuits Syst. 32(3), 236–244 (1985)

    Article  Google Scholar 

  66. Chao, H.-C., Lin, C.-S., Chieu, B.-C.: Minimax design of FIR all-pass filters. IEEE Trans. Circuits Syst. Part II 47(6), 576–580 (2000)

    Article  Google Scholar 

  67. Chen, C.-K., Lee, J.-H.: Design of digital all-pass filters using a weighted least squares approach. IEEE Trans. Circuits Syst. Part II 41(5), 346–351 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Wanhammar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wanhammar, L., Saramäki, T. (2020). Synthesis of FIR Filters. In: Digital Filters Using MATLAB . Springer, Cham. https://doi.org/10.1007/978-3-030-24063-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24063-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24062-2

  • Online ISBN: 978-3-030-24063-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics