Skip to main content

A Review on Graph Analytics-Based Approaches in Protein-Protein Interaction Network

  • Conference paper
  • First Online:
Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications (AISGSC 2019 2019)

Abstract

Essential proteins play a vital role in the biological and cellular activity of a living organism. Identification of essential proteins is crucial for understanding the cellular life mechanisms for medical treatments and disease diagnosis. The existing computational measures are primarily based on identifying dense sub-graphs from the protein interaction network. In this research paper, the existing computational, graph theoretic approaches are reviewed and a novel research direction to find essential proteins is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PPI:

Protein-protein interaction

RNA:

Ribonucleic acid

Bio GRID:

The Biological General Repository for Interaction Datasets

PPIM:

Protein-protein interaction database for maize

DIP:

Database of Interacting Proteins

SGD:

The Saccharomyces Genome Database

MIPS :

Munich Information Center for Protein Sequences

References

  1. Pál C, Papp B, Hurst LD (2003) Genomic function (communication arising): rate of evolution and gene dispensability. Nature 421:496

    Article  Google Scholar 

  2. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Gen 2:e88

    Article  Google Scholar 

  3. Fuentes G et al (2011) Role of protein flexibility in the discovery of new drugs. Drug Dev Res 72:26–35

    Article  Google Scholar 

  4. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 3:541

    Article  Google Scholar 

  5. Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C (2003) Large-scale essential gene identification in candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181

    Article  Google Scholar 

  6. Xu Z, Zikos D, Osterrieder N, KarstenTischer B (2014) Generation of a complete single-gene knockout bacterial artificial chromosome library of cowpox virus and identification of its essential genes. J Virol 88:490–502

    Article  Google Scholar 

  7. Walia RR, Caragea C, Lewis BA, Towfic F, Terribilini M, El-Manzalawy Y, Dobbs D, Honavar V (2012) Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. BMC Bioinform 13:89

    Article  Google Scholar 

  8. Qin C, Sun Y, Dong Y (2016) A new method for identifying essential proteins based on network topology properties and protein complexes. PLoS One 11:e0161042

    Article  Google Scholar 

  9. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H (2004) Int Act: an open source molecular interaction database. Nuc Acid Res 32(Suppl_1):D452–D455

    Article  Google Scholar 

  10. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) Bio GRID: a general repository for interaction datasets. Nuc Acid Res 34(Database issue):D535–D539

    Article  Google Scholar 

  11. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the molecular interaction database. Nuc Acid Re 35(Database issue):D572–D574

    Article  Google Scholar 

  12. Zhu G, Wu A, Xu X-J, Xiao P-P, Lu L, Liu J, Zhao X-M (2016) PPIM: a protein-protein interaction database for maize. Plant Physiol 170:618–626

    Article  Google Scholar 

  13. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, von Mering C (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucl Acid Res 45(Database issue):D362–D368

    Article  Google Scholar 

  14. Arighi CN, Roberts PM, Agarwal S, Bhattacharya S, Cesareni G, Chatr-aryamontri A, Wu CH (2011) Bio Creative III interactive task: an overview. BMC Bioinform 12(Suppl 8):S4

    Article  Google Scholar 

  15. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D (2000) DIP: the database of interacting proteins. Nuc Acid Res 28:289–291

    Article  Google Scholar 

  16. Luo H, Lin Y, Gao F, Zhang CT, Zhang R (2013) DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nuc Acid Res 42:D574–D580

    Article  Google Scholar 

  17. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes HW, Ruepp A (2004) The MIPS mammalian protein–proteininteraction database. Bioinformatics 21:832–834

    Article  Google Scholar 

  18. Vazquez A, Alzate O (eds) (2010) Protein interaction networks, neuroproteomics. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  19. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22:803–806

    Article  Google Scholar 

  20. Mistry D, Wise RP, Dickerson JA (2017) Diff SLC: a graph centrality method to detect essential proteins of a protein-protein interaction network. PLoS One 12:e0187091

    Article  Google Scholar 

  21. Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Social Net 32:245–251

    Article  Google Scholar 

  22. Abedi M, Gheisari Y (2015) Nodes with high centrality in protein interaction networks are responsible for driving signaling pathways in diabetic nephropathy. Peer J 3:e1284

    Article  Google Scholar 

  23. Joy MP, Brock A, Ingber DE, Huang S (2005) High-betweenness proteins in the yeast protein interaction network. Bio Med Res Int 2:96–103

    Google Scholar 

  24. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Nat Acad Sci USA 99:12–7821-7826

    Article  MathSciNet  Google Scholar 

  25. Hahn MW, Kern AD (2004) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22:803–806

    Article  Google Scholar 

  26. Bihari A, Pandia MK (2015) Eigenvector centrality and its application in research professionals’ relationship network. In: Futuristic trends on computational analysis and knowledge management (ABLAZE), pp 510–514

    Google Scholar 

  27. Özgür A, Vu T, Erkan G, Radev DR (2008) Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24:i277–i285

    Article  Google Scholar 

  28. Newman ME (2006) Modularity and community structure in networks. Proceed Nat Acad Sci 103:8577–8582

    Article  Google Scholar 

  29. Bennett L, Kittas A, Liu S, Papageorgiou LG, Tsoka S (2014) Community structure detection for overlapping modules through mathematical programming in protein interaction networks. PloS One 20:e112821

    Article  Google Scholar 

  30. Lewis AC, Jones NS, Porter MA, Deane CM (2010) The function of communities in protein interaction networks at multiple scales. BMC Syst Biol 4:100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Narmadha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narmadha, D., Pravin, A., Naveen Sundar, G., Premnath Dhanaraj (2020). A Review on Graph Analytics-Based Approaches in Protein-Protein Interaction Network. In: Kumar, L., Jayashree, L., Manimegalai, R. (eds) Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications. AISGSC 2019 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-24051-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24051-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24050-9

  • Online ISBN: 978-3-030-24051-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics