Immersive Virtual Reality in Technical Drawing of Engineering Degrees

  • M. P. RubioEmail author
  • D. Vergara
  • S. Rodríguez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1007)


The use of virtual reality (VR) technology is reaching almost all sectors: medicine, engineering, entertainment, defense, marketing, etc. Especially to those whose main objective is the representation of elements and three-dimensional environments of reality. This is especially relevant within the field of teaching-learning activities of technical drawing. In this case, one of the competences is to represent three-dimensional pieces and objects in two-dimensional drawings. In this process the student must have and develop the spatial skills that depend on the innate abilities of each one. In this communication an experience of the use of the Immersive Virtual Reality is presented to the development of spatial skills in technical drawing. This work describes the design, creation and programming of the computer application, choice of equipment and development of a methodology for use in teaching.


Immersive virtual reality Technical drawing Spatial skills Virtual environments 



This work has been developed as part of “Virtual-Ledgers-Tecnologías DLT/Blockchain y Cripto-IOT sobre organizaciones virtuales de agentes ligeros y su aplicación en la eficiencia en el transporte de última milla”, ID SA267P18, project financed by Junta Castilla y León, Consejería de Educación, and FEDER funds.


  1. 1.
    Sorby, S.A.: Developing 3-D spatial visualization skills. Eng. Des. Graph. J. 63(2), 21–32 (1999)Google Scholar
  2. 2.
    Rafi, A., Samsudin, K.A., Said, C.H.: Training in spatial visualization: the effects of training method and gender. Educ. Technol. Soc. 11(3), 127–140 (2008)Google Scholar
  3. 3.
    Vergara, D., Lorenzo, M., Rubio, M.P.: Virtual environments in materials science and engineering: the students’ opinion. In: Lim, H. (ed.) Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education, 1st edn., pp. 148–165. IGI Global, Hershey (2015)CrossRefGoogle Scholar
  4. 4.
    Adánez, G.P., Velasco, A.D.: Construção de um teste de visualização a partir da psicologia cognitiva. Avaliação Psicologica 1(1), 39–47 (2002)Google Scholar
  5. 5.
    Uttal, D.H., Miller, D.I., Newcombe, N.S.: Exploring and enhancing spatial thinking: links to achievement in science, technology, engineering, and mathematics? Curr. Dir. Psychol. Sci. 22(5), 367–373 (2013)CrossRefGoogle Scholar
  6. 6.
    Wang, Ch.X, Zhao, Q., Sun, W., Wan, X., Cui, Q.: 3D scene of virtual reality system design and research. Key Eng. Mater. 522, 761–768 (2012)CrossRefGoogle Scholar
  7. 7.
    Vergara, D., Rubio, M.P., Lorenzo, M.: A virtual resource for enhancing the spatial comprehension of crystal lattices. Educ. Sci. 8, 153 (2018)CrossRefGoogle Scholar
  8. 8.
    Griol, D., Molina, J.: Measuring the differences between human-human and human-machine dialogs. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4, 2 (2015)CrossRefGoogle Scholar
  9. 9.
    Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Advances in Intelligent Systems and Computing, vol. 617 (2017)Google Scholar
  10. 10.
    Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. 2018, 17 (2018)CrossRefGoogle Scholar
  11. 11.
    Gonzalez-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors 18(3), 865 (2018)CrossRefGoogle Scholar
  12. 12.
    García, O., Chamoso, P., Prieto, J., Rodríguez, S., De La Prieta, F.: A serious game to reduce consumption in smart buildings. Commun. Comput. Inf. Sci. 722, 481–493 (2017)Google Scholar
  13. 13.
    Vergara, D., Rubio, M.P., Lorenzo, M.: On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 1, 11 (2017)CrossRefGoogle Scholar
  14. 14.
    Vergara, D., Rubio, M.P., Lorenzo, M.: Interactive virtual platform for simulating a concrete compression test. Key Eng. Mater. 572, 582–585 (2014)CrossRefGoogle Scholar
  15. 15.
    Vergara, D., Rubio, M.P.: Active methodologies through interdisciplinary teaching links: industrial radiography and technical drawing. J. Mater. Educ. 34(5–6), 175–186 (2012)Google Scholar
  16. 16.
    Vergara, D., Rubio, M.P., Lorenzo, M.: New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 143(2), 05016009 (2017)CrossRefGoogle Scholar
  17. 17.
    Sampaio, A.Z.: Virtual reality technology applied in teaching and research in civil engineering education. J. Inf. Tech. Appl. Educ. 1, 152–163 (2012)Google Scholar
  18. 18.
    Chou, Ch., Hsu, H.-L., Yao, Y.-S.: Construction of a virtual reality learning environment for teaching structural analysis. Comput. Appl. Eng. Educ. 5, 223–230 (1997)CrossRefGoogle Scholar
  19. 19.
    Vergara, D., Rubio, M.P., Lorenzo, M.: A virtual environment for enhancing the understanding of ternary phase diagrams. J. Mater. Educ. 37(3–4), 93–101 (2015)Google Scholar
  20. 20.
    Vergara, D., Rodríguez, M., Rubio, M.P., Ferrer, J., Núñez, F.J., Moralejo, L.: Formación de personal técnico en ensayos no destructivos por ultrasonidos mediante realidad virtual. Dyna 93(2), 150–154 (2018)CrossRefGoogle Scholar
  21. 21.
    Rubio, M.P., Vergara, D., Rodríguez, S., Extremera, J.: Virtual reality learning environments in materials engineering: rockwell hardness test. In: Di Mascio, T. et al. (eds.) Methodologies and Intelligent Systems for Technology Enhanced Learning (MIS4TEL 2018), AISC 804, pp. 106–111. Springer, Switzerland (2019)Google Scholar
  22. 22.
    Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1, 24 (2017)CrossRefGoogle Scholar
  23. 23.
    Bhattacharjee, D., Paul, A., Kim, J.H., Karthigaikumar, P.: An immersive learning model using evolutionary learning. Comput. Electr. Eng. 65, 236–249 (2018)CrossRefGoogle Scholar
  24. 24.
    De Freitas, S., Rebolledo-Mendez, G., Liarokapis, F., Magoulas, G., Poulovassilis, A.: Learning as immersive experiences: using the four-dimensional framework for designing and evaluating immersive learning experiences in a virtual world. Br. J. Educ. Technol. 41, 69–85 (2010)CrossRefGoogle Scholar
  25. 25.
    Lee, E.A.L., Wong, K.W.: Learning with desktop virtual reality: low spatial ability learners are more positively affected. Comput. Educ. 79, 49–58 (2014)CrossRefGoogle Scholar
  26. 26.
    Parong, J., Mayer, R.E.: Learning science in immersive virtual reality. J. Educ. Psychol. 110(6), 785–797 (2018)CrossRefGoogle Scholar
  27. 27.
    Conference for AR & VR innovation: Accessed 08 Feb 2019
  28. 28.
    Unreal Engine 4 Games: Accessed 08 Feb 2019
  29. 29.
    Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Mot. Ski. 47(2), 599–604 (1978)CrossRefGoogle Scholar
  30. 30.
    Guay, R.B.: Purdue Spatial Visualization Tests. Purdue Research Foundation, West Lafayette (1977)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of SalamancaSalamancaSpain
  2. 2.Catholic University of ÁvilaÁvilaSpain

Personalised recommendations