On the Importance of the Design of Virtual Reality Learning Environments

  • Diego Vergara
  • Manuel Pablo RubioEmail author
  • Miguel Lorenzo
  • Sara Rodríguez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1007)


Students consider spatial comprehension as one of the major difficulties in engineering studies. A good example of this is the teaching-learning process of ternary phase diagrams (TPDs) where students´ spatial abilities are put to the test. To solve this problem, two virtual learning environments (VLEs) based on virtual reality (VR) are presented in this paper. In essence, they consist of 3D interactive applications designed for interacting in real time with a TPD in different ways: rotating view, exploding view phases, changing point of view, observing hidden zones of the TPD by applying transparency option, cutting the diagram revealing isothermal sections, etc. According to students’ opinion shown in this paper, the usefulness of VR in topics that exhibit spatial comprehension difficulties is revealed. Furthermore, comparing the results using each VLE -one developed using technologies from several years ago and the other one using a more updated technology-, the students´ opinion reflects the importance of the VLE design on the motivation that this type of didactic tools awakens in students for being used.


Virtual reality Ternary phase diagrams Spatial comprehension 



This work has been developed as part of “Virtual-Ledgers-Tecnologías DLT/Blockchain y Cripto-IOT sobre organizaciones virtuales de agentes ligeros y su aplicación en la eficiencia en el transporte de última milla”, ID SA267P18, project financed by Junta Castilla y León, Consejería de Educación, and FEDER funds.


  1. 1.
    Vergara, D., Rubio, M.P., Lorenzo, M.: On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 1, 11 (2017)CrossRefGoogle Scholar
  2. 2.
    Chasanidou, D.: Design for motivation: evaluation of a design tool. Multimodal Technol. Interact. 2, 6 (2018)CrossRefGoogle Scholar
  3. 3.
    Vergara, D., Rubio, M.P., Lorenzo, M.: A virtual resource for enhancing the spatial comprehension of crystal lattices. Educ. Sci. 8, 153 (2018)CrossRefGoogle Scholar
  4. 4.
    Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. In: Wireless Communications and Mobile Computing (2018)Google Scholar
  5. 5.
    Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. Advances in Intelligent Systems and Computing, vol. 617 (2017)Google Scholar
  6. 6.
    Griol, D., Molina, J.: Measuring the differences between human-human and human-machine dialogs. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4, 2 (2015)CrossRefGoogle Scholar
  7. 7.
    Conradty, C., Bogner, F.X.: Hypertext or textbook: effects on motivation and gain in knowledge. Educ. Sci. 6, 29 (2016)CrossRefGoogle Scholar
  8. 8.
    LaForce, M., Noble, E., Blackwell, C.: Problem-based learning (PBL) and student interest in stem careers: the roles of motivation and ability beliefs. Educ. Sci. 7, 92 (2017)CrossRefGoogle Scholar
  9. 9.
    Vergara, D., Rubio, M.P., Lorenzo, M.: New virtual application for improving the students´ understanding of ternary phase diagrams. Key Eng. Mater. 572, 578–581 (2014)CrossRefGoogle Scholar
  10. 10.
    Vergara, D., Rubio, M.P., Lorenzo, M.: A virtual environment for enhancing the understanding of ternary phase diagrams. J. Mater. Educ. 37(3–4), 93–101 (2015)Google Scholar
  11. 11.
    West, D.R.F.: Ternary Phase Diagrams. Chapman & Hall, New York (1982)CrossRefGoogle Scholar
  12. 12.
    Chang, Y.-M., Birnie, D.P., Kingery, W.D.: Physical Ceramics: Principles for Ceramic Science and Engineering. Wiley, New York (1996)Google Scholar
  13. 13.
    Rafi, A., Khairul, A., Samad, A., Maizatul, H., Mahadzir, M.: Improving spatial ability using a web-based virtual environment (WbVE). Autom. Constr. 14, 707–715 (2005)CrossRefGoogle Scholar
  14. 14.
    Fonseca, D., Villagrasa, S., Martí, N., Redondo, E., Sánchez, A.: Visualization methods in architecture education using 3D virtual models and augmented reality in mobile and social networks. Procedia Soc. Behav. Sci. 93, 1337–1343 (2013)CrossRefGoogle Scholar
  15. 15.
    Cohen, Ch.A, Hegarty, M.: Visualizing cross sections: training spatial thinking using interactive animations and virtual objects. Learn. Individ. Differ. 33, 63–71 (2014)CrossRefGoogle Scholar
  16. 16.
    Huang, T.Ch., Lin, Ch.Y: From 3D modeling to 3D printing: development of a differentiated spatial ability teaching model. Telemat. Inform. 34(2), 604–613 (2017)CrossRefGoogle Scholar
  17. 17.
    Vergara, D., Rubio, M.P., Lorenzo, M.: On the use of PDF-3D to overcome spatial visualization difficulties linked with ternary phase diagrams. Educ. Sci. 9(2), 67 (2019)CrossRefGoogle Scholar
  18. 18.
    Rubio, M.P., Vergara, D., Rodríguez, S., Extremera, J.: Virtual reality learning environments in materials engineering: Rockwell hardness test. In: Di Mascio, T., et al. (eds.) Methodologies and Intelligent Systems for Technology Enhanced Learning (MIS4TEL 2018). AISC, vol. 804, pp. 106–111. Springer, Cham (2019)Google Scholar
  19. 19.
    Bryson, S.: Approaches to the successful design and implementation of VR applications. In: Virtual Reality Applications, pp. 3–15 (1995)Google Scholar
  20. 20.
    Huang, H.M., Rauch, U., Liaw, S.S.: Investigating learners’ attitudes toward virtual reality learning environments: based on a constructivist approach. Comput. Educ. 55(3), 1171–1182 (2010)CrossRefGoogle Scholar
  21. 21.
    García, O., Chamoso, P., Prieto, J., Rodríguez, S., De La Prieta, F.: A serious game to reduce consumption in smart buildings. Commun. Comput. Inf. Sci. 722, 481–493 (2017)Google Scholar
  22. 22.
    Casado-Vara, R., Prieto-Castrillo, F., Corchado, J.M.: A game theory approach for cooperative control to improve data quality and false data detection in WSN. Int. J. Robust Nonlinear Control 28(16), 5087–5102 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion 49, 227–239 (2019)CrossRefGoogle Scholar
  24. 24.
    Erra, U., Malandrino, D., Pepe, L.: A methodological evaluation of natural user interfaces for immersive 3D Graph explorations. J. Vis. Lang. Comput. 44, 13–27 (2018)CrossRefGoogle Scholar
  25. 25.
    Johnston, A.P., Rae, J., Ariotti, N., Bailey, B., Lilja, A., Webb, R., McGhee, J.: Journey to the centre of the cell: virtual reality immersion into scientific data. Traffic 19(2), 105–110 (2018)CrossRefGoogle Scholar
  26. 26.
    Dede, C., Salzman, M.C., Loftin, R.B.: ScienceSpace: virtual realities for learning complex and abstract scientific concepts. In: Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, pp. 246–252. IEEE (1996)Google Scholar
  27. 27.
    Vergara, D., Rubio, M.P., Lorenzo, M.: Interactive virtual platform for simulating a concrete compression test. Key Eng. Mater. 572, 582–585 (2014)CrossRefGoogle Scholar
  28. 28.
    Vergara, D., Lorenzo, M., Rubio, M.P.: Virtual environments in materials science and engineering: The students’ opinion. In: Lim, H. (ed.) Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education, 1st edn, pp. 148–165. IGI Global, Hershey (2015)CrossRefGoogle Scholar
  29. 29.
    Vergara, D., Rubio, M.P.: The application of didactic virtual tools in the instruction of industrial radiography. J. Mater. Educ. 37(1–2), 17–26 (2015)Google Scholar
  30. 30.
    Vergara, D., Rubio, M.P., Prieto, F., Lorenzo, M.: Enhancing the teaching/learning of materials mechanical characterization by using virtual reality. J. Mater. Educ. 38(3–4), 63–74 (2016)Google Scholar
  31. 31.
    Vergara, D., Lorenzo, M., Rubio, M.P.: On the use of virtual environments in engineering education. Int. J. Qual. Assur. Eng. Technol. Educ. 5(2), 30–41 (2016)CrossRefGoogle Scholar
  32. 32.
    Vergara, D., Rubio, M.P., Lorenzo, M.: New approach for the teaching of concrete compression tests in large groups of engineering students. J. Prof. Issues Eng. Educ. Pract. 143(2), 05016009 (2017)CrossRefGoogle Scholar
  33. 33.
    Vergara, D., Rodríguez, M., Rubio, M.P., Ferrer, J., Núñez, F.J., Moralejo, L.: Formación de personal técnico en ensayos no destructivos por ultrasonidos mediante realidad virtual. Dyna 93(2), 150–154 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Diego Vergara
    • 1
  • Manuel Pablo Rubio
    • 2
    Email author
  • Miguel Lorenzo
    • 2
  • Sara Rodríguez
    • 2
  1. 1.Catholic University of ÁvilaÁvilaSpain
  2. 2.University of SalamancaSalamancaSpain

Personalised recommendations