Cognitive Emotions Recognition in e-Learning: Exploring the Role of Age Differences and Personality Traits

  • Berardina De CarolisEmail author
  • Francesca D’Errico
  • Marinella Paciello
  • Giuseppe Palestra
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1007)


It is well known that emotions have a great impact on the learning process and this becomes especially important when moving to on-line education. Then, endowing e-learning systems with the capability of assessing the emotional state of learners, can be used to provide feedback about their difficulties and problems. In this paper, we present an empirical study performed with a group of first-year students aiming at getting information on users’ affective state during the learning process considering their personality traits. At this aim, we developed a tool for cognitive emotion recognition from facial expressions. Results show how detected emotions can be considered as an indicator of the e-learning process quality. Furthermore, another result is that cognitive emotions, experienced during e-learning process, can be strongly differentiated according to the learning activities, students age and personality.


Emotions E-learning Facial expression recognition 


  1. 1.
    Damasio, A.R.: Descartes Error: Emotion, Reason and the Human Brain. G.P. Putnam Sons, New York (1994)Google Scholar
  2. 2.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  3. 3.
    Castelfranchi, C.: Affective appraisal versus cognitive evaluation in social emotions and interactions. In: Affective Interactions, pp. 76–106 (2000)CrossRefGoogle Scholar
  4. 4.
    O’Regan, K.: Emotion and e-learning. J. Asynchronous Learn. Netw. 7(3), 78–92 (2003)Google Scholar
  5. 5.
    Castelfranchi, C., Miceli, M.: The cognitive-motivational compound of emotional experience. Emot. Rev. 1(3), 223–231 (2009)CrossRefGoogle Scholar
  6. 6.
    Scherer, K.R.: Psychological models of emotion. Neuropsychol. Emot. 137(3), 137–162 (2000)Google Scholar
  7. 7.
    D’Errico, F., Poggi, I.: Social emotions. A challenge for sentiment analysis and user models. In: Tkalcic, M., De Carolis, B. (eds.) Emotions and Personality in Personalized Systems, pp. 13–34. Springer, Berlin (2016)Google Scholar
  8. 8.
    Feidakis, M., Daradoumis, T., Caballé, S., Conesa, J.: Embedding emotion awareness into e-learning environments. Int. J. Emer. Technol. Learn. 9(7), 39–46 (2014)CrossRefGoogle Scholar
  9. 9.
    D’Errico, F., Paciello, M., Cerniglia, L.: When emotions enhance students’ engagement in e-learning processes. J. E-Learn. Knowl. Soc. 12(4), 9–23 (2016)Google Scholar
  10. 10.
    Bassi, M., Steca, P., Delle Fave, A., Caprara, G.V.: Academic self-efficacy beliefs and quality of experience in learning. J. Youth Adolesc. 36(3), 301–312 (2007)CrossRefGoogle Scholar
  11. 11.
    Peters, R.S.: Moral Development and Moral Education. Routledge, New York (2015)Google Scholar
  12. 12.
    Israel, S.: In Praise of the Cognitive Emotions, p. 174. Routledge, New York (1991)Google Scholar
  13. 13.
    Sebe, N.: Multimodal interfaces: challenges and perspectives. J. Ambient Intell. Smart Environ. 1, 23–30 (2009)Google Scholar
  14. 14.
    Khalfallah, J., Slama, J.B.H.: Facial expression recognition for intelligent tutoring systems in remote laboratories platform. Procedia Comput. Sci. 73, 274–281 (2015)CrossRefGoogle Scholar
  15. 15.
    Poropat, A.E.: A meta-analysis of the five-factor model of personality and academic performance. Psychol. Bull. 135(2), 322 (2009)CrossRefGoogle Scholar
  16. 16.
    De Carolis, B., de Gemmis, M., Lops, P., Palestra, G.: Recognizing users feedback from non-verbal communicative acts in conversational recommender systems. Pattern Recogn. Lett. 99, 87–95 (2017)CrossRefGoogle Scholar
  17. 17.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE, June 2005Google Scholar
  18. 18.
    Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis 57(2), 137–154 (2004)CrossRefGoogle Scholar
  19. 19.
    O’Reilly, H., Pigat, D., Fridenson, S., Berggren, S., Tal, S., Golan, O., Bölte, S., Baron-Cohen, S., Lundqvist, D.: The EU-emotion stimulus set: a validation study. Behav. Res. Methods 48(2), 567–576 (2016)CrossRefGoogle Scholar
  20. 20.
    Golan, O., Baron-Cohen, S., Hill, J.: The Cambridge mindreading (CAM) face-voice battery: testing complex emotion recognition in adults with and without Asperger syndrome. J. Autism Dev. Disord. 36(2), 169–183 (2006)CrossRefGoogle Scholar
  21. 21.
    Golan, O., Sinai-Gavrilov, Y., Baron-Cohen, S.: The Cambridge mindreading face-voice battery for children (CAM-C): complex emotion recognition in children with and without autism spectrum conditions. Mol. Autism 6(1), 22 (2015)CrossRefGoogle Scholar
  22. 22.
    Di Mele, L., D’Errico, F., Cerniglia, L., Cersosimo, M., Paciello, M.: Convinzioni di efficacia personale nella regolazione dell’apprendimento universitario mediato dalle tecnologie. Qwerty-Open Interdisc. J. Technol. Cult. Educ. 10(2), 63–77 (2015)Google Scholar
  23. 23.
    Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)CrossRefGoogle Scholar
  24. 24.
    D’Errico, F., Paciello, M., De Carolis, B., Vattani, A., Palestra, G., Anzivino, G.: Cognitive emotions in e-learning processes and their potential relationship with students’ academic adjustment. Int. J. Emot. Educ. 10(1), 89–111 (2018)Google Scholar
  25. 25.
    Caprara, G.V., Barbaranelli, C., Borgogni, L.: BFQ: big five questionnaire. Manuale. Firenze: Organizzazioni Speciali (1993)Google Scholar
  26. 26.
    Penley, J.A., Tomaka, J.: Associations among the big five, emotional responses, and coping with acute stress. Pers. Individ. Differ. 32(7), 1215–1228 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Berardina De Carolis
    • 1
    Email author
  • Francesca D’Errico
    • 2
  • Marinella Paciello
    • 3
  • Giuseppe Palestra
    • 4
  1. 1.Department of Computer ScienceUniversity of BariBariItaly
  2. 2.Fil.Co.Spe DepartmentRomaTre UniversityRomeItaly
  3. 3.International Telematic University UNINETTUNORomeItaly
  4. 4.Hero SrlMilanItaly

Personalised recommendations