Technical Evaluation of Plug-in Electric Vehicles Charging Load on a Real Distribution Grid

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1004)


The popularity of Plug-in Electric Vehicles (PEVs) in the last few years however is a turning point toward alleviating the global warming, but the inevitable effects of charging load of these vehicles on electric grids has become a concern for grid operators. While uncoordinated charging of a large number of PEVs may jeopardize the operation of the grids, intelligent methods can be used to coordinate the charging processes for the benefit of the grids. This paper presents a comprehensive model of future charging load of PEVs in a real distribution grid by considering PEVs’ characteristics and different driving patterns. Domestic and public charging are both considered. Moreover, an intelligent approach based on Non-dominated Sorting Genetic Algorithm (NSGA-II) will be introduced to coordinate PEVs’ charging with the aim of minimizing the power losses cost of the grid and maximizing the PEV owners’ satisfaction and considering technical constraints in our next work. This study is carried out on a real medium voltage distribution grid of Tehran Province Distribution Company in Lavasan city in Iran. The results show the detrimental effects of uncoordinated charging of PEVs on the operation of the grid which can be reduced by implementing the mentioned intelligent coordination approach.


Plug-in Electric Vehicle NSGA-II Distribution grid 


  1. 1.
    Shafiee, S., Fotuhi-Firuzabad, M., Rastegar, M.: Investigating the impacts of plug-in hybrid electric vehicles on power distribution systems. IEEE Trans. Smart Grid 4, 1351–1360 (2013)CrossRefGoogle Scholar
  2. 2.
    Hafez, O., Bhattacharya, K.: Queuing analysis based PEV load modeling considering battery charging behavior and their impact on distribution system operation. IEEE Trans. Smart Grid 9(1), 261–273 (2018)CrossRefGoogle Scholar
  3. 3.
    Hashemi, B., Shahabi, M., Teimourzadeh Baboli, P.: Stochastic based optimal charging strategy for plug-in electric vehicles aggregator under incentive and regulatory policies of DSO. IEEE Trans. Veh. Technol. pp. 1–11 (2019)Google Scholar
  4. 4.
    Gazafroudi, A.S., Corchado, J.M., Kean, A., Soroudi, A.: Decentralized flexibility management for electric vehicles. IET Renew. Power Gener. (2019).
  5. 5.
    Gazafroudi, A.S., Soares, J., Ghazvini, M.A.F., Pinto, T., Vale, Z., Corchado, J.M.: Stochastic interval-based optimal offering model for residential energy management systems by household owners. Int. J. Electr. Power Energy Syst. 105, 201–219 (2019)CrossRefGoogle Scholar
  6. 6.
    Prieto-Castrillo, F., Shokri Gazafroudi, A., Prieto, J., Corchado, J.M.: An Ising spin-based model to explore efficient flexibility in distributed power systems. Complexity (2018)Google Scholar
  7. 7.
    Gazafroudi, A.S., Prieto-Castrillo, F., Pinto, T., Prieto, J., Corchado, J.M., Bajo, J.: Energy flexibility management based on predictive dispatch model of domestic energy management system. Energies 10(9), 1397 (2017)CrossRefGoogle Scholar
  8. 8.
    Gazafroudi, A.S., Shafie-Khah, M., Abedi, M., Hosseinian, S.H., Dehkordi, G.H., Goel, L., Karimyan, P., Prieto-Castrillo, F., Corchado, J.M., Catalão, J.P.: A novel stochastic reserve cost allocation approach of electricity market agents in the restructured power systems. Electr. Power Syst. Res. 152, 223–236 (2017)CrossRefGoogle Scholar
  9. 9.
    Gazafroudi, A.S., Shafie-khah, M., Fitiwi, D.Z., Santos, S.F., Corchado, J.M., Catalão, J.P.: Impact of strategic behaviors of the electricity consumers on power system reliability. In: Sustainable Interdependent Networks II, pp. 193–215. Springer, Cham (2019)Google Scholar
  10. 10.
    Gazafroudi, A.S., Prieto-Castrillo, F., Pinto, T., Corchado, J.M.: Energy flexibility management in power distribution systems: decentralized approach. In: 2018 International Conference on Smart Energy Systems and Technologies (SEST), pp. 1–6. IEEE, September 2018Google Scholar
  11. 11.
    Gazafroudi, A.S., Pinto, T., Prieto-Castrillo, F., Corchado, J.M., Abrishambaf, O., Jozi, A., Vale, Z.: Energy flexibility assessment of a multi agent-based smart home energy system. In: 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–7. IEEE, September 2017Google Scholar
  12. 12.
    Bajool, R., Shafie-khah, M., Gazafroudi, A.S., Catalão, J.P.: Mitigation of active and reactive demand response mismatches through reactive power control considering static load modeling in distribution grids. In: 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 1637–1642. IEEE, August 2017Google Scholar
  13. 13.
    Gazafroudi, A.S., Prieto-Castrillo, F., Pinto, T., Jozi, A., Vale, Z.: Economic evaluation of predictive dispatch model in MAS-based smart home. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 81–91. Springer, Cham, June 2017Google Scholar
  14. 14.
    Gazafroudi, A.S., De Paz, J.F., Prieto-Castrillo, F., Villarrubia, G., Talari, S., Shafie-khah, M., Catalão, J.P.: A review of multi-agent based energy management systems. In: International Symposium on Ambient Intelligence, pp. 203–209. Springer, Cham, June 2017Google Scholar
  15. 15.
    Gazafroudi, A.S., Pinto, T., Prieto-Castrillo, F., Prieto, J., Corchado, J.M., Jozi, A., Vale, Z., Venayagamoorthy, G.K.: Organization-based multi-agent structure of the smart home electricity system. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1327–1334. IEEE, June 2017Google Scholar
  16. 16.
    Gazafroudi, A.S., Prieto-Castrillo, F., Corchado, J.M.: Residential energy management using a novel interval optimization method. In: 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 0196–0201. IEEE April 2017Google Scholar
  17. 17.
    Gong, L., Cao, W., Liu, K., Zhao, J., Li, X.: Spatial and temporal optimization strategy for plug-in electric vehicle charging to mitigate impacts on distribution network. Energies 11(6), 1373 (2018)CrossRefGoogle Scholar
  18. 18.
    Kang, Q., Feng, S., Zhou, M., Ammari, A.C., Sedraoui, K.: Optimal load scheduling of plug-in hybrid electric vehicles via weight aggregation multi-objective evolutionary algorithms. IEEE Trans. Intell. Transp. Syst. 18(9), 2557–2568 (2017)CrossRefGoogle Scholar
  19. 19.
    Najafi, S., Talari, S., Gazafroudi, A.S., Shafie-khah, M., Corchado, J.M., Catalão, J.P.: Decentralized control of DR using a multi-agent method. In: Sustainable Interdependent Networks, pp. 233–249. Springer, Cham (2018) Google Scholar
  20. 20.
    Ebrahimi, M., Gazafroudi, A. S., Corchado, J. M., Ebrahimi, M.: Energy management of smart home considering residences’ satisfaction and PHEV. In: 2018 International Conference on Smart Energy Systems and Technologies (SEST), pp. 1–6. IEEE September 2018Google Scholar
  21. 21.
    Pinto, T., Gazafroudi, A.S., Prieto-Castrillo, F., Santos, G., Silva, F., Corchado, J.M., Vale, Z.: Reserve costs allocation model for energy and reserve market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), pp. 1–6. IEEE, September 2017Google Scholar
  22. 22.
    Navarro-Cáceres, M., Gazafroudi, A.S., Prieto-Castillo, F., Venyagamoorthy, K.G., Corchado, J.M.: Application of artificial immune system to domestic energy management problem. In: 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–7. IEEE, September 2017Google Scholar
  23. 23.
    Hernández, E., González, A., Pérez, B., de Luis Reboredo, A., Rodríguez, S.: Virtual organization for fintech management. In: International Symposium on Distributed Computing and Artificial Intelligence, pp. 201–210. Springer, Cham, June 2018Google Scholar
  24. 24.
    Hernández, E., Sittón, I., Rodríguez, S., Gil, A.B., García, R.J.: An investment recommender multi-agent system in financial technology. In: The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 3–10. Springer, Cham, June 2018Google Scholar
  25. 25.
    Candanedo, I.S., Nieves, E. H., González, S.R., Martín, M.T.S., Briones, A.G.: Machine learning predictive model for industry 4.0. In: International Conference on Knowledge Management in Organizations, pp. 501–510. Springer, Cham, August 2018Google Scholar
  26. 26.
    Nassaj, A., Shahrtash, S.M.: An accelerated preventive agent based scheme for post-disturbance voltage control and loss reduction. IEEE Trans. Power Syst. 33(44), 4508–4518 (2018)CrossRefGoogle Scholar
  27. 27.
    Nassaj, A., Shahrtash, S.M.: A predictive agent-based scheme for post-disturbance voltage control. Int. J. Electr. Power Energy Syst. 98, 189–198 (2018)CrossRefGoogle Scholar
  28. 28.
    Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto J., Corchado J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion (2019)Google Scholar
  29. 29.
    González-Briones, A., Chamoso, P., Yoe, H., Corchado, J.M.: GreenVMAS: virtual organization based platform for heating greenhouses using waste energy from power plants. Sensors 18(3), 861 (2018)CrossRefGoogle Scholar
  30. 30.
    Casado-Vara, R., Novais, P., Gil, A.B., Prieto, J., Corchado, J.M.: Distributed continuous-time fault estimation control for multiple devices in IoT networks. IEEE Access (2019)Google Scholar
  31. 31.
    Chamoso, P., González-Briones, A., Rivas, A., De La Prieta, F., Corchado J.M.: Social computing in currency exchange. Knowl. Inf. Syst. (2019)Google Scholar
  32. 32.
    Casado-Vara, R., Prieto-Castrillo, F., Corchado, J.M.: A game theory approach for cooperative control to improve data quality and false data detection in WSN. Int. J. Robust Nonlinear Control 28(16), 5087–5102 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl.-Based Syst. 137, 54–64 (2017)CrossRefGoogle Scholar
  34. 34.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016). Scholar
  35. 35.
    Chamoso, P., Rodríguez, S., de la Prieta, F., Bajo, J.: Classification of retinal vessels using a collaborative agent-based architecture. AI Commun. (Preprint), 1–18 (2018)Google Scholar
  36. 36.
    Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. (2018)Google Scholar
  37. 37.
    Gonzalez-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors (Basel) 18(3), 865–865 (2018). Scholar
  38. 38.
    Gonzalez-Briones, A., Chamoso, P., De La Prieta, F., Demazeau, Y., Corchado, J.M.: Agreement technologies for energy optimization at home. Sensors (Basel) 18(5), 1633 (2018). Scholar
  39. 39.
    Di Mascio, T., Vittorini, P., Gennari, R., Melonio, A., De La Prieta, F., Alrifai, M.: The learners’ user classes in the TERENCE adaptive learning system. In: 2012 IEEE 12th International Conference on Advanced Learning Technologies, pp. 572–576. IEEEGoogle Scholar
  40. 40.
    Tapia, D.I., Alonso, R.S., De Paz, J.F., Zato, C., Prieta, F.D.L.: A telemonitoring system for healthcare using heterogeneous wireless sensor networks. Int. J. Artif. Intell. 6(S11), 112–128 (2011)Google Scholar
  41. 41.
    de la Prieta, F., Navarro, M., García, J.A., González, R., Rodríguez, S.: Multi-agent system for controlling a cloud computing environment. In: Portuguese Conference on Artificial Intelligence, pp. 13–20. Springer, Heidelberg, September 2013Google Scholar
  42. 42.
    Chamoso, P., Rivas, A., Martín-Limorti, J.J., Rodríguez, S.: A hash based image matching algorithm for social networks. In: Advances in Intelligent Systems and Computing, vol. 619, pp. 183–190 (2018). Scholar
  43. 43.
    Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in industry 4.0. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 258–261 (2017)Google Scholar
  44. 44.
    García, O., Chamoso, P., Prieto, J., Rodríguez, S., De La Prieta, F.: A serious game to reduce consumption in smart buildings. In: Communications in Computer and Information Science vol. 722, pp. 481–493 (2017). Scholar
  45. 45.
    Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Advances in Intelligent Systems and Computing, vol. 617 (2017). Scholar
  46. 46.
    Canizes, B., Pinto, T., Soares, J., Vale, Z., Chamoso, P., Santos, D.: Smart City: A GECAD-BISITE energy management case study. In: 15th International Conference on Practical Applications of Agents and Multi-Agent Systems PAAMS 2017, Trends in Cyber-Physical Multi-Agent Systems, vol. 2, pp. 92–100 (2017). Scholar
  47. 47.
    Chamoso, P., de La Prieta, F., Eibenstein, A., Santos-Santos, D., Tizio, A., Vittorini, P.: A device supporting the self management of tinnitus. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 10209, pp. 399–410 (2017). Scholar
  48. 48.
    Román, J.A., Rodríguez, S., de da Prieta, F.: Improving the distribution of services in MAS. In: Communications in Computer and Information Science, vol. 616 (2016). Scholar
  49. 49.
    Buciarelli, E., Silvestri, M., González, S.R.: Decision economics. In: 13th International Conference on Commemoration of the Birth Centennial of Herbert A. Simon 1916–2016 (Nobel Prize in Economics 1978): Distributed Computing and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 475. Springer (2016)Google Scholar
  50. 50.
    Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015). Scholar
  51. 51.
    Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., Maestro De Las Casas, M.L., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed. Res. Int. (2015). Scholar
  52. 52.
    Li, T., Sun, S., Corchado, J. M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: FUSION 2014 - 17th International Conference on Information Fusion (2014).
  53. 53.
    Prieto, J., Alonso, A.A., de la Rosa, R., Carrera, A.: Adaptive framework for uncertainty analysis in electromagnetic field measurements. Radiat. Prot. Dosimetry, ncu260 (2014)Google Scholar
  54. 54.
    Chamoso, P., Raveane, W., Parra, V., González, A.: Uavs applied to the counting and monitoring of animals. In: Advances in Intelligent Systems and Computing, vol. 291, pp. 71–80 (2014). Scholar
  55. 55.
    Pérez, A., Chamoso, P., Parra, V., Sánchez, A.J.: Ground vehicle detection through aerial images taken by a UAV. In: 2014 17th International Conference on Information Fusion (FUSION) (2014)Google Scholar
  56. 56.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Omatu, S., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS ONE 9(7) (2014). Scholar
  57. 57.
    Li, T., Sun, S., Corchado, J. M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014).
  58. 58.
    García Coria, J.A., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 PART 1), 1189–1205 (2014). Scholar
  59. 59.
    Heras, S., De la Prieta, F., Julian, V., Rodríguez, S., Botti, V., Bajo, J., Corchado, J.M.: Agreement technologies and their use in cloud computing environments. Prog. Artif. Intell. 1(4), 277–290 (2012)CrossRefGoogle Scholar
  60. 60.
    Prieto, J., Mazuelas, S., Bahillo, A., Fernández, P., Lorenzo, R. M., Abril, E.J.: Accurate and robust localization in harsh environments based on V2I communication. In: Vehicular Technologies - Deployment and Applications. INTECH Open Access Publisher (2013)Google Scholar
  61. 61.
    Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for ambient intelligence systems. Inf. Sci. 222, 47–65 (2013). Scholar
  62. 62.
    Prieto, J., Mazuelas, S., Bahillo, A., Fernandez, P., Lorenzo, R.M., Abril, E.J.: Adaptive data fusion for wireless localization in harsh environments. IEEE Trans. Signal Process. 60(4), 1585–1596 (2012)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Muñoz, M., Rodríguez, M., Rodríguez, M.E., Rodríguez, S.: Genetic evaluation of the class III dentofacial in rural and urban Spanish population by AI techniques. In: Advances in Intelligent and Soft Computing, vol. 151. AISC (2012). Scholar
  64. 64.
    Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Logic J. IGPL 20(4), 689–698 (2012). Scholar
  65. 65.
    García, E., Rodríguez, S., Martín, B., Zato, C., Pérez, B.: MISIA: middleware infrastructure to simulate intelligent agents. In: Advances in Intelligent and Soft Computing, vol. 91 (2011). Scholar
  66. 66.
    Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI. vol. 6077 (2010). Scholar
  67. 67.
    Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings (2010)
  68. 68.
    Prieto, J., Mazuelas, S., Bahillo, A., Fernández, P., Lorenzo, R.M., Abril, E.J.:. On the minimization of different sources of error for an RTT-based indoor localization system without any calibration stage. In: 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–6 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Babol Noshirvani University of TechnologyBabolIran
  2. 2.University of MazandaranBabolsarIran

Personalised recommendations