Skip to main content

Achieving Fairness by Using Dynamic Fragmentation and Buffer Size in Multihop Wireless Networks

  • Conference paper
  • First Online:
Emerging Technologies in Computing (iCETiC 2019)

Abstract

Wireless Networks are error-prone due to multiple physical changes including fading, noise, path loss and interferences. As a result, the channel efficiency can be severely degraded. In addition, in saturated multihop wireless networks, nodes with multiple hops away from the destination suffer additional throughput degradation signified by high collisions resulting in high packet loss. It has been shown that packets fragmentation and buffer size play an important role in improving performance. In this work, we propose a technique to dynamically estimate appropriate buffer size and fragmentation threshold for individual nodes across the network in reference of their locality from the gateway and on their traffic load. The results show that nodes far from the gateway incur significantly higher throughput. The technique also results in better fairness across all nodes. Furthermore, it enhances the total network throughput while lowering the end to end and MAC delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alshakhsi, S.A.A., Hasbullah, H.: Studying the effect of transmission rate and packet size parameters on voip performance. In: 2012 International Conference on Computer Information Science (ICCIS), vol. 2, pp. 814–819 (2012). https://doi.org/10.1109/ICCISci.2012.6297138

  2. Bisnik, N., Abouzeid, A.: Queuing network models for delay analysis of multihop wireless ad hoc networks. In: Proceedings of the 2006 International Conference on Wireless communications and Mobile Computing, IWCMC 2006, pp. 773–778. ACM, New York (2006). https://doi.org/10.1145/1143549.1143704

  3. Bonald, T., Roberts, J.W.: Internet and the Erlang formula. SIGCOMM Comput. Commun. Rev. 42(1), 23–30 (2012). https://doi.org/10.1145/2096149.2096153

    Article  Google Scholar 

  4. Chang, Y., Lee, C., Kwon, B., Copeland, J.A.: Dynamic optimal fragmentation for goodput enhancement in WLANs. In: 2007 3rd International Conference on Testbeds and Research Infrastructure for the Development of Networks and Communities, pp. 1–9 (2007). https://doi.org/10.1109/TRIDENTCOM.2007.4444673

  5. Ci, S., Sharif, H., Noubir, G.: Improving goodput of the IEEE 802.11 MAC protocol by using congestion control methods. I. J. Wirel. Opt. Commun. 1(2), 165–177 (2003). https://doi.org/10.1142/S021979950300015X

    Article  Google Scholar 

  6. Das, S.M., Pucha, H., Hu, Y.C.: Symmetrical fairness in infrastructure access in multi-hop wireless networks. In: ICDCS 2005: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems, pp. 461–470. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  7. Freeman, R.L.: Fundamentals of Telecommunications, 2nd edn. Wiley-IEEE Press, Hoboken (2005)

    Book  Google Scholar 

  8. Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., Gerla, M.: The impact of multihop wireless channel on tcp throughput and loss. In: IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), vol. 3, pp. 1744–1753 (2003). https://doi.org/10.1109/INFCOM.2003.1209197

  9. Gambiroza, V., Sadeghi, B., Knightly, E.W.: End-to-end performance and fairness in multihop wireless backhaul networks. In: MobiCom 2004: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking. ACM Press, New York, pp. 287–301 (2004)

    Google Scholar 

  10. Gast, M.S.: 802.11 Wireless Networks: The Definitive Guide, 2nd edn. O’Reilly Media, Inc., Sebastopol (2005)

    Google Scholar 

  11. Gurewitz, O., Mancuso, V., Shi, J., Knightly, E.W.: Measurement and modeling of the origins of starvation of congestion-controlled flows in wireless mesh networks. IEEE/ACM Trans. Netw. 17(6), 1832–1845 (2009). https://doi.org/10.1109/TNET.2009.2019643

    Article  Google Scholar 

  12. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance anomaly of 802.11b. In: INFOCOM (2003)

    Google Scholar 

  13. Hoblos, J.: Improving throughput and fairness in multi-hop wireless mesh networks using adaptive contention window algorithm (ACWA). In: The 7th International COnference on Wireless Commincations, Networking, Mobile Computing and Applications (WiCOM). IEEE Explorer, Wuhan, China (2011)

    Google Scholar 

  14. Jalaa, H.: Fairness enhancement in IEEE 802.11s multi-hop wireless mesh networks. In: 2011 IEEE 13th International Conference on Communication Technology, pp. 647–651 (2011)

    Google Scholar 

  15. Hoblos, J., Peyravi, H.:: Fair access rate (far) provisioning in multi-hop multi-channel wireless mesh networks. In: Proceedings in International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT), pp. 1577–1586. IEEE Explorer, Moscow (2010)

    Google Scholar 

  16. Jembre, Y.Z., Li, Z., Hiroo, S., Komuro, N., Choi, Y.J.: Channel assignment for multi-interface multi-hop wireless networks. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1216–1220 (2016). https://doi.org/10.1109/ICTC.2016.7763411

  17. Jiang, L.B., Liew, S.C.: Improving throughput and fairness by reducing exposed and hidden nodes in 802.11 networks. IEEE Trans. Mob. Comput. 7(1), 34–49 (2008). https://doi.org/10.1109/TMC.2007.1070

    Article  Google Scholar 

  18. Jun, J., Sichitiu, M.L.: Fairness and qos in multihop wireless networks abstract. Vehicular Technology Conference. VCT 2003-Fall. In: 2003 IEEE 58th, vol. 5, pp. 2936–2940 (2003)

    Google Scholar 

  19. Kim, B.S., Fang, Y., Wong, T.F., Kwon, Y.: Throughput enhancement through dynamic fragmentation in wireless LANs. IEEE Trans. Veh. Technol. 54, 1415–1425 (2005)

    Article  Google Scholar 

  20. Korhonen, J., Wang, Y.: Effect of packet size on loss rate and delay in wireless links. In: IEEE Wireless Communications and Networking Conference, 2005, vol. 3, pp. 1608–1613 (2005). https://doi.org/10.1109/WCNC.2005.1424754

  21. Li, J., Blake, C., De, D.S., Lee, H.I., Morris, R.: Capacity of ad hoc wireless networks. In: 2001 Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, MobiCom, pp. 61–69. ACM, New York (2001). https://doi.org/10.1145/381677.381684

  22. Mancuso, V., Gurewitz, O., Khattab, A., Knightly, E.W.: Elastic rate limiting for spatially biased wireless mesh networks. In: INFOCOM, pp. 1720–1728 (2010)

    Google Scholar 

  23. Nahle, S., Malouch, N.: Fairness enhancement in wireless mesh networks. In: CoNEXT 2007: Proceedings of the 2007 ACM CoNEXT Conference, pp. 1–2. ACM, New York (2007)

    Google Scholar 

  24. Park, S., Chang, Y., Copeland, J.A.: Throughput enhancement of manets: packet fragmentation with hidden stations and BERs. In: 2012 IEEE Consumer Communications and Networking Conference (CCNC), pp. 188–193 (2012)

    Google Scholar 

  25. Rao, S., Pillai, S.: Impact of IEEE 802.11 MAC packet size on performance of wireless sensor networks. IOSR J. Electron. Commun. Eng. (IOSR-JECE) 10(3), 6–11 (2015). https://doi.org/10.9790/2834-10340611

    Article  Google Scholar 

  26. Shih, K., Wang, S., Chou, C., Cheng, L.: A dynamic rate adaptation with fragmentation MAC protocol against channel variation for wireless LANs. In: Proceedings of the 13th IEEE Symposium on Computers and Communications (ISCC 2008), Marrakech, Morocco, 6–9 July 2008, pp. 143–148 (2008). https://doi.org/10.1109/ISCC.2008.4625732

  27. So, J., Vaidya, N.H.: Routing and channel assignment in multi-channel multi-hop wireless networks with single network interface. Technical report (2005)

    Google Scholar 

  28. Xu, S., Saadawi, T.: Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks? Communications Magazine. IEEE 39(6), 130–137 (2001)

    Google Scholar 

  29. Yazid, M., Bouallouche-Medjkoune, L., Aïssani, D., Khodja, L.Z.: Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions. Wirel. Netw. 20(5), 917–934 (2014). https://doi.org/10.1007/s11276-013-0653-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalaa Hoblos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoblos, J. (2019). Achieving Fairness by Using Dynamic Fragmentation and Buffer Size in Multihop Wireless Networks. In: Miraz, M., Excell, P., Ware, A., Soomro, S., Ali, M. (eds) Emerging Technologies in Computing. iCETiC 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-23943-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23943-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23942-8

  • Online ISBN: 978-3-030-23943-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics