Skip to main content

Evaluation of Colour Pre-processing on Patch-Based Classification of H&E-Stained Images

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11435)


This paper compares the effects of colour pre-processing on the classification performance of H&E-stained images. Variations in the tissue preparation procedures, acquisition systems, stain conditions and reagents are all source of artifacts that can affect negatively computer-based classification. Pre-processing methods such as colour constancy, transfer and deconvolution have been proposed to compensate the artifacts. In this paper we compare quantitatively the combined effect of six colour pre-processing procedures and 12 colour texture descriptors on patch-based classification of H&E-stained images. We found that colour pre-processing had negative effects on accuracy in most cases – particularly when used with colour descriptors. However, some pre-processing procedures proved beneficial when employed in conjunction with classic texture descriptors such as co-occurrence matrices, Gabor filters and Local Binary Patterns.


  • Colour
  • Histology
  • Hematoxylin
  • Eosin
  • Texture

F. Bianconi—Performed this work as an Academic Visitor at City, University of London.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

    Complete results available at


  1. Griffin, J., Treanor, D.: Digital pathology in clinical use: where are we now and what is holding us back? Histopathology 70(1), 134–145 (2017)

    CrossRef  Google Scholar 

  2. Sudharshan, P., Petitjean, C., Spanhol, F., et al.: Multiple instance learning for histopathological breast cancer image classification. Expert Syst. Appl. 117, 103–111 (2019)

    CrossRef  Google Scholar 

  3. Jørgensen, A., Emborg, J., Røge, R., et al.: Exploiting multiple color representations to improve colon cancer detection in whole slide H&E stains. In: Stoyanov, D., et al. (eds.) Computational Pathology and Ophthalmic Medical Image Analysis. LNCS, vol. 11039, pp. 61–68. Springer, Cham (2018).

    CrossRef  Google Scholar 

  4. Kather, J., Weis, C.-A., Bianconi, F., et al.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6 (2016). Article no. 27988

    Google Scholar 

  5. Coudray, N., Ocampo, P., Sakellaropoulos, T., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018)

    CrossRef  Google Scholar 

  6. Khan, A., Rajpoot, N., Treanor, D., et al.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)

    CrossRef  Google Scholar 

  7. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. 16, 34–42 (2018)

    CrossRef  Google Scholar 

  8. Sethi, A., Sha, L., Vahadane, A., et al.: Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images. J. Pathol. Inform. 7(17) (2016)

    CrossRef  Google Scholar 

  9. Ciompi, F., Geessink, O., Bejnordi, B.E., et al.: The importance of stain normalization in colorectal tissue classification with convolutional networks. In Proceedings of the IEEE International Symposium on Biomed Imaging, Melbourne, Australia (2017)

    Google Scholar 

  10. Gadermayr, M., Cooper, S.S., Klinkhammer, B., Boor, P., Merhof, D.: A quantitative assessment of image normalization for classifying histopathological tissue of the kidney. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 3–13. Springer, Cham (2017).

    CrossRef  Google Scholar 

  11. Dimitropoulos, K., Barmpoutis, P., Zioga, C., et al.: Grading of invasive breast carcinoma through Grassmannian VLADencoding. PLoS ONE 12(9) (2017)

    CrossRef  Google Scholar 

  12. Spanhol, F., Oliveira, L., Petitjean, C., et al.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    CrossRef  Google Scholar 

  13. Shamir, L., Orlov, N., Mark Eckley, D., et al.: IICBU 2008: a proposed benchmark suite for biological image analysis. Med. Biol. Eng. Comput. 46(9), 943–947 (2008)

    CrossRef  Google Scholar 

  14. Beck, A., Sangoi, A., Leung, S., et al.: Imaging: systematic analysis of breast cancer morphology uncoversstromal features associated with survival. Sci. Transl. Med. 3(108) (2011)

    Google Scholar 

  15. Sirinukunwattana, K., Snead, D.R.J., Rajpoot, N.M.: A stochastic polygons model for glandular structures in colon histology images. IEEE Trans. Med. Imaging 34(11), 2366–2378 (2015)

    CrossRef  Google Scholar 

  16. Cernadas, E., Fernández-Delgado, M., González-Rufino, E., et al.: Influence of normalization and color space to color texture classification. Pattern Recognit. 61, 120–138 (2017)

    CrossRef  Google Scholar 

  17. Macenko, M., Niethammer, M., Marron, J., et al.: A method for normalizing histology slides for quantitative analysis. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Boston, USA, pp. 1107–1110, June 2009

    Google Scholar 

  18. Reinhard, E., Ashikhmin, M., Gooch, B., et al.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)

    CrossRef  Google Scholar 

  19. Ruifrok, A., Johnston, D.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

    Google Scholar 

  20. Swain, M., Ballard, D.: Color indexing. Int. J. Comp. Vis. 7(1), 11–32 (1991)

    CrossRef  Google Scholar 

  21. Pietikainen, M., Nieminen, S., Marszalec, E., et al.: Accurate color discrimination with classification based on feature distributions. In: Proceedings of the International Conference on Pattern Recognition (ICPR)Vienna, Austria, vol. 3, pp. 833–838, August 1996

    Google Scholar 

  22. Bianconi, F., Fernández, A.: Rotation invariant co-occurrence features based on digital circles and discrete fourier transform. Pattern Recogn. Lett. 48, 34–41 (2014)

    CrossRef  Google Scholar 

  23. Bianconi, F., Bello-Cerezo, R., Napoletano, P.: Improved opponent color local binary patterns: an effective localimage descriptor for color texture classification. J. Electron. Imaging, 27(1) (2018)

    CrossRef  Google Scholar 

  24. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, January 2016

    Google Scholar 

  25. Chatfield, K., Simonyan, K., Vedaldi, A., et al.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference, Nottingham, UK, September 2014

    Google Scholar 

Download references


This work was partially supported by the Italian Ministry of Education, University and Research (MIUR) under the Individual Funding Scheme for Fundamental Research (‘FFABR 2017’) and by the Department of Engineering at the University of Perugia, Italy, under the Fundamental Research programme 2018.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Francesco Bianconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bianconi, F., Kather, J.N., Reyes-Aldasoro, C.C. (2019). Evaluation of Colour Pre-processing on Patch-Based Classification of H&E-Stained Images. In: Reyes-Aldasoro, C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds) Digital Pathology. ECDP 2019. Lecture Notes in Computer Science(), vol 11435. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23936-7

  • Online ISBN: 978-3-030-23937-4

  • eBook Packages: Computer ScienceComputer Science (R0)