PanNuke: An Open Pan-Cancer Histology Dataset for Nuclei Instance Segmentation and Classification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11435)


In this work we present an experimental setup to semi automatically obtain exhaustive nuclei labels across 19 different tissue types, and therefore construct a large pan-cancer dataset for nuclei instance segmentation and classification, with minimal sampling bias. The dataset consists of 455 visual fields, of which 312 are randomly sampled from more than 20K whole slide images at different magnifications, from multiple data sources. In total the dataset contains 216.4K labeled nuclei, each with an instance segmentation mask. We independently pursue three separate streams to create the dataset: detection, classification, and instance segmentation by ensembling in total 34 models from already existing, public datasets, therefore showing that the learnt knowledge can be efficiently transferred to create new datasets. All three streams are either validated on existing public benchmarks or validated by expert pathologists, and finally merged and validated once again to create a large, comprehensive pan-cancer nuclei segmentation and detection dataset PanNuke.


Computational pathology Instance segmentation Instance classification Histology dataset 


  1. 1.
    Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 108ra113 (2011)CrossRefGoogle Scholar
  2. 2.
    Chang, H., et al.: Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association. IEEE Trans. Med. Imaging 32(4), 670–682 (2013)CrossRefGoogle Scholar
  3. 3.
    Elmore, J.G., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. Jama 313(11), 1122–1132 (2015)CrossRefGoogle Scholar
  4. 4.
    Elmore, J.G., Wells, C.K., Lee, C.H., Howard, D.H., Feinstein, A.R.: Variability in radiologists’ interpretations of mammograms. N. Engl. J. Med. 331(22), 1493–1499 (1994)CrossRefGoogle Scholar
  5. 5.
    Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)CrossRefGoogle Scholar
  6. 6.
    Gal, Y.: Uncertainty in deep learning. University of Cambridge (2016)Google Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  8. 8.
    Javed, S., Fraz, M.M., Epstein, D., Snead, D., Rajpoot, N.M.: Cellular community detection for tissue phenotyping in histology images. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 120–129. Springer, Cham (2018). Scholar
  9. 9.
    Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015). Scholar
  10. 10.
    Koohababni, N.A., Jahanifar, M., Gooya, A., Rajpoot, N.: Nuclei detection using mixture density networks. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 241–248. Springer, Cham (2018). Scholar
  11. 11.
    Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)CrossRefGoogle Scholar
  12. 12.
    Lee, G., Veltri, R.W., Zhu, G., Ali, S., Epstein, J.I., Madabhushi, A.: Nuclear shape and architecture in benign fields predict biochemical recurrence in prostate cancer patients following radical prostatectomy: preliminary findings. Eur. Urol. Focus 3(4–5), 457–466 (2017)CrossRefGoogle Scholar
  13. 13.
    Lu, C., et al.: Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab. Investig. 98(11), 1438 (2018)CrossRefGoogle Scholar
  14. 14.
    Sethi, A., Sha, L., Deaton, R.J., Macias, V., Beck, A.H., Gann, P.H.: Abstract lb-285: computational pathology for predicting prostate cancer recurrence (2015)Google Scholar
  15. 15.
    Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imagingg 35(5), 1196–1206 (2016)CrossRefGoogle Scholar
  16. 16.
    Tofighi, M., Guo, T., Vanamala, J.K., Monga, V.: Deep networks with shape priors for nucleus detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 719–723. IEEE (2018)Google Scholar
  17. 17.
    Verma, V., et al.: Manifold mixup: Learning better representations by interpolating hidden states (2018)Google Scholar
  18. 18.
    Vu, Q.D., et al.: Methods for segmentation and classification of digital microscopy tissue images. arXiv preprint arXiv:1810.13230 (2018)
  19. 19.
    Zhou, Y., Dou, Q., Chen, H., Qin, J., Heng, P.A.: SFCN-OPI: detection and fine-grained classification of nuclei using sibling FCN with objectness prior interaction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of WarwickCoventryUK
  2. 2.University Hospital Coventry-WarwickshireCoventryUK
  3. 3.The Alan Turing InstituteLondonUK
  4. 4.University of SheffieldSheffieldUK

Personalised recommendations