Skip to main content

PanNuke: An Open Pan-Cancer Histology Dataset for Nuclei Instance Segmentation and Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11435))

Abstract

In this work we present an experimental setup to semi automatically obtain exhaustive nuclei labels across 19 different tissue types, and therefore construct a large pan-cancer dataset for nuclei instance segmentation and classification, with minimal sampling bias. The dataset consists of 455 visual fields, of which 312 are randomly sampled from more than 20K whole slide images at different magnifications, from multiple data sources. In total the dataset contains 216.4K labeled nuclei, each with an instance segmentation mask. We independently pursue three separate streams to create the dataset: detection, classification, and instance segmentation by ensembling in total 34 models from already existing, public datasets, therefore showing that the learnt knowledge can be efficiently transferred to create new datasets. All three streams are either validated on existing public benchmarks or validated by expert pathologists, and finally merged and validated once again to create a large, comprehensive pan-cancer nuclei segmentation and detection dataset PanNuke.

J. Gamper and N. Alemi Koohbanani—Equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://archive.rsna.org/2018/18014765.html.

  2. 2.

    https://spie.org/conferences-and-exhibitions/medical-imaging/grand-challenge-2019.

  3. 3.

    For the final statistics for the dataset as well as the verified ground truth refer to https://jgamper.github.io/PanNukeDataset/.

  4. 4.

    https://monuseg.grand-challenge.org/.

References

  1. Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 108ra113 (2011)

    Article  Google Scholar 

  2. Chang, H., et al.: Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association. IEEE Trans. Med. Imaging 32(4), 670–682 (2013)

    Article  Google Scholar 

  3. Elmore, J.G., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. Jama 313(11), 1122–1132 (2015)

    Article  Google Scholar 

  4. Elmore, J.G., Wells, C.K., Lee, C.H., Howard, D.H., Feinstein, A.R.: Variability in radiologists’ interpretations of mammograms. N. Engl. J. Med. 331(22), 1493–1499 (1994)

    Article  Google Scholar 

  5. Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)

    Article  Google Scholar 

  6. Gal, Y.: Uncertainty in deep learning. University of Cambridge (2016)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Javed, S., Fraz, M.M., Epstein, D., Snead, D., Rajpoot, N.M.: Cellular community detection for tissue phenotyping in histology images. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_15

    Chapter  Google Scholar 

  9. Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_33

    Chapter  Google Scholar 

  10. Koohababni, N.A., Jahanifar, M., Gooya, A., Rajpoot, N.: Nuclei detection using mixture density networks. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 241–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_28

    Chapter  Google Scholar 

  11. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  12. Lee, G., Veltri, R.W., Zhu, G., Ali, S., Epstein, J.I., Madabhushi, A.: Nuclear shape and architecture in benign fields predict biochemical recurrence in prostate cancer patients following radical prostatectomy: preliminary findings. Eur. Urol. Focus 3(4–5), 457–466 (2017)

    Article  Google Scholar 

  13. Lu, C., et al.: Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab. Investig. 98(11), 1438 (2018)

    Article  Google Scholar 

  14. Sethi, A., Sha, L., Deaton, R.J., Macias, V., Beck, A.H., Gann, P.H.: Abstract lb-285: computational pathology for predicting prostate cancer recurrence (2015)

    Google Scholar 

  15. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imagingg 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  16. Tofighi, M., Guo, T., Vanamala, J.K., Monga, V.: Deep networks with shape priors for nucleus detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 719–723. IEEE (2018)

    Google Scholar 

  17. Verma, V., et al.: Manifold mixup: Learning better representations by interpolating hidden states (2018)

    Google Scholar 

  18. Vu, Q.D., et al.: Methods for segmentation and classification of digital microscopy tissue images. arXiv preprint arXiv:1810.13230 (2018)

  19. Zhou, Y., Dou, Q., Chen, H., Qin, J., Heng, P.A.: SFCN-OPI: detection and fine-grained classification of nuclei using sibling FCN with objectness prior interaction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jevgenij Gamper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gamper, J., Alemi Koohbanani, N., Benet, K., Khuram, A., Rajpoot, N. (2019). PanNuke: An Open Pan-Cancer Histology Dataset for Nuclei Instance Segmentation and Classification. In: Reyes-Aldasoro, C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds) Digital Pathology. ECDP 2019. Lecture Notes in Computer Science(), vol 11435. Springer, Cham. https://doi.org/10.1007/978-3-030-23937-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23937-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23936-7

  • Online ISBN: 978-3-030-23937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics