Online Recognition via a Finite Mixture of Multivariate Generalized Gaussian Distributions

  • Fatma NajarEmail author
  • Sami Bourouis
  • Rula Al-Azawi
  • Ali Al-Badi
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)


The huge amount of data expanding day by day entail creating powerful real-time algorithms. Such algorithms allow a reactive processing between the input multimedia data and the system. In particular, we are mainly concerned with active learning and clustering images and videos for the purpose of pattern recognition. In this paper, we propose a novel online recognition algorithm based on multivariate generalized Gaussian distributions. We estimate at first the generative model’s parameters within a discriminative framework (fixed-point, Riemannian averaged fixed-point, and Fisher scoring). Then, we propose an online recognition algorithm in accordance with those algorithms. Finally, we applied our proposed framework on three challenging problems, namely: human action recognition, facial expression recognition, and pedestrian detection from infrared images. Experiments demonstrate the robustness of our approach by comparing with the state-of-the art algorithms and offline learning techniques.


Online recognition Multivariate generalized Gaussian distribution Mixture model Discriminative framework Human action recognition Facial expression recognition Infrared images 


  1. 1.
    Allili, M.S., Bouguila, N., Ziou, D.: Online video foreground segmentation using general gaussian mixture modeling. In: 2007 IEEE International Conference on Signal Processing and Communications, pp. 959–962. IEEE, New York (2007)Google Scholar
  2. 2.
    Amayri, O., Bouguila, N.: Online spam filtering using support vector machines. In: 2009 IEEE Symposium on Computers and Communications, pp. 337–340. IEEE, New York (2009)Google Scholar
  3. 3.
    Amayri, O., Bouguila, N.: Online news topic detection and tracking via localized feature selection. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, New York (2013)Google Scholar
  4. 4.
    Bdiri, T., Bouguila, N., Ziou, D.: A statistical framework for online learning using adjustable model selection criteria. Eng. Appl. Artif. Intell. 49, 19–42 (2016)CrossRefGoogle Scholar
  5. 5.
    Beringer, J., Hüllermeier, E.: Online clustering of parallel data streams. Data Knowl. Eng. 58(2), 180–204 (2006)CrossRefGoogle Scholar
  6. 6.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Computer Vision–ECCV 2006, pp. 517–530 (2006)Google Scholar
  7. 7.
    Boucenna, S., Gaussier, P., Andry, P., Hafemeister, L.: Imitation as a communication tool for online facial expression learning and recognition. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5323–5328. IEEE, New York (2010)Google Scholar
  8. 8.
    Bouguila, N., Ziou, D.: Online clustering via finite mixtures of Dirichlet and minimum message length. Eng. Appl. Artif. Intell. 19(4), 371–379 (2006)CrossRefGoogle Scholar
  9. 9.
    Boukouvalas, Z., Fu, G.S., Adalı, T.: An efficient multivariate generalized gaussian distribution estimator: application to IVA. In: 2015 49th Annual Conference on Information Sciences and Systems (CISS), pp. 1–4. IEEE, New York (2015)Google Scholar
  10. 10.
    Boukouvalas, Z., Said, S., Bombrun, L., Berthoumieu, Y., Adalı, T.: A new Riemannian averaged fixed-point algorithm for MGGD parameter estimation. IEEE Signal Process. Lett. 22(12), 2314–2318 (2015)CrossRefGoogle Scholar
  11. 11.
    Channoufi, I., Bourouis, S., Bouguila, N., Hamrouni, K.: Color image segmentation with bounded generalized gaussian mixture model and feature selection. In: 4th International Conference on Advanced Technologies for Signal and Image Processing, ATSIP 2018, Sousse, March 21–24, 2018, pp. 1–6 (2018)Google Scholar
  12. 12.
    Channoufi, I., Bourouis, S., Bouguila, N., Hamrouni, K.: Image and video denoising by combining unsupervised bounded generalized gaussian mixture modeling and spatial information. Multimedia Tools Appl. 77(19), 25591–25606 (2018)CrossRefGoogle Scholar
  13. 13.
    Channoufi, I., Bourouis, S., Bouguila, N., Hamrouni, K.: Spatially constrained mixture model with feature selection for image and video segmentation. In: Image and Signal Processing - 8th International Conference, ICISP 2018, Proceedings, Cherbourg, July 2–4, 2018, pp. 36–44 (2018)Google Scholar
  14. 14.
    Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, Prague, vol. 1, pp. 1–2 (2004)Google Scholar
  15. 15.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Elguebaly, T., Bouguila, N.: Semantic scene classification with generalized gaussian mixture models. In: International Conference Image Analysis and Recognition, pp. 159–166. Springer, New York (2015)Google Scholar
  17. 17.
    Fan, W., Bouguila, N.: Online facial expression recognition based on finite Beta-Liouville mixture models. In: 2013 International Conference on Computer and Robot Vision, pp. 37–44. IEEE, New York (2013)Google Scholar
  18. 18.
    Fan, W., Bouguila, N.: Online variational learning of generalized Dirichlet mixture models with feature selection. Neurocomputing 126, 166–179 (2014)CrossRefGoogle Scholar
  19. 19.
    Fan, W., Sallay, H., Bouguila, N., Bourouis, S.: A hierarchical Dirichlet process mixture of generalized Dirichlet distributions for feature selection. Comput. Electr. Eng. 43, 48–65 (2015)CrossRefGoogle Scholar
  20. 20.
    Gilbert, A., Bowden, R.: Image and video mining through online learning. Comput. Vis. Image Underst. 158, 72–84 (2017)CrossRefGoogle Scholar
  21. 21.
    Hong, H., Neven, H., Von der Malsburg, C.: Online facial expression recognition based on personalized galleries. In: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 354–359. IEEE, New York (1998)Google Scholar
  22. 22.
    Kanade, T., Tian, Y., Cohn, J.F.: Comprehensive database for facial expression analysis. In: Conference Paper, Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition (FG’00), p. 46. IEEE, New York (2000)Google Scholar
  23. 23.
    Ko, B.C., Kwak, J.Y., Nam, J.Y.: Human tracking in thermal images using adaptive particle filters with online random forest learning. Opt. Eng. 52(11), 113105 (2013)CrossRefGoogle Scholar
  24. 24.
    Kose, M., Incel, O.D., Ersoy, C.: Online human activity recognition on smart phones. In: Workshop on Mobile Sensing: From Smartphones and Wearables to Big Data, vol. 16, pp. 11–15 (2012)Google Scholar
  25. 25.
    Kotz, S.: Multivariate distributions at a cross-road. In: Statistical Distributions in Scientific Work, vol. 1, pp. 247–270 (1975)Google Scholar
  26. 26.
    Kumar, K.N., Rao, K.S., Srinivas, Y., Satyanarayana, C.: Studies on texture segmentation using D-dimensional generalized gaussian distribution integrated with hierarchical clustering. Int. J. Image Graph. Signal Process. 8(3), 45–54 (2016)CrossRefGoogle Scholar
  27. 27.
    Kwak, J.Y., Ko, B.C., Nam, J.Y.: Pedestrian tracking using online boosted random ferns learning in far-infrared imagery for safe driving at night. IEEE Trans. Intell. Transp. Syst. 18(1), 69–81 (2017)CrossRefGoogle Scholar
  28. 28.
    Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)CrossRefGoogle Scholar
  29. 29.
    Lee, D.S.: Effective gaussian mixture learning for video background subtraction. IEEE Trans. Patt. Anal. Mach. Intell. 27(5), 827–832 (2005)CrossRefGoogle Scholar
  30. 30.
    Lowe, D.G., et al.: Object recognition from local scale-invariant features. In: ICCV, vol. 99, pp. 1150–1157 (1999)Google Scholar
  31. 31.
    McDuff, D., Kaliouby, R., Picard, R.: Crowdsourcing facial responses to online videos: extended abstract. In: Proceedings of the 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) (Xi’an), pp. 512–518 (2015)Google Scholar
  32. 32.
    Naiar, F., Bourouis, S., Bouguila, N., Belghith, S.: A fixed-point estimation algorithm for learning the multivariate GGMM: application to human action recognition. In: 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), pp. 1–4. IEEE, New York (2018)Google Scholar
  33. 33.
    Najar, F., Bourouis, S., Bouguila, N., Belghith, S.: A comparison between different gaussian-based mixture models. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 704–708. IEEE, New York (2017)Google Scholar
  34. 34.
    Najar, F., Bourouis, S., Zaguia, A., Bouguila, N., Belghith, S.: Unsupervised human action categorization using a Riemannian averaged fixed-point learning of multivariate GGMM. In: International Conference Image Analysis and Recognition, pp. 408–415. Springer, New York (2018)Google Scholar
  35. 35.
    Najar, F., Bourouis, S., Bouguila, N., Belghith, S.: Unsupervised learning of finite full covariance multivariate generalized gaussian mixture models for human activity recognition. Multimed. Tools Appl. 1, 1–23 (2019)Google Scholar
  36. 36.
    Ordóñez, F.J., Iglesias, J.A., De Toledo, P., Ledezma, A., Sanchis, A.: Online activity recognition using evolving classifiers. Expert Syst. Appl. 40(4), 1248–1255 (2013)CrossRefGoogle Scholar
  37. 37.
    Panzner, M., Beyer, O., Cimiano, P.: Human activity classification with online growing neural gas. In: Workshop on New Challenges in Neural Computation (NC2) (2013)Google Scholar
  38. 38.
    Pascal, F., Bombrun, L., Tourneret, J.Y., Berthoumieu, Y.: Parameter estimation for multivariate generalized gaussian distributions. IEEE Trans. Signal Process. 61(23), 5960–5971 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Perkins, S., Theiler, J.: Online feature selection using grafting. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 592–599 (2003)Google Scholar
  40. 40.
    Sailaja, V., Srinivasa Rao, K., Reddy, K.: Text independent speaker identification with finite multivariate generalized gaussian mixture model and hierarchical clustering algorithm. Int. J. Comput. Appl. 11(11), 0975–8887 (2010)Google Scholar
  41. 41.
    Sato, M.A., Ishii, S.: On-line EM algorithm for the normalized gaussian network. Neural Comput. 12(2), 407–432 (2000)CrossRefGoogle Scholar
  42. 42.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 3, pp. 32–36. IEEE, New York (2004)Google Scholar
  43. 43.
    Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 357–360. ACM, New York (2007)Google Scholar
  44. 44.
    Sun, X., Kashima, H., Ueda, N.: Large-scale personalized human activity recognition using online multitask learning. IEEE Trans. Knowl. Data Eng. 25(11), 2551–2563 (2013)CrossRefGoogle Scholar
  45. 45.
    Verdoolaege, G., Scheunders, P.: On the geometry of multivariate generalized gaussian models. J. Math. Imag. Vis. 43(3), 180–193 (2012)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Vieira, T., Faugeroux, R., Martínez, D., Lewiner, T.: Online human moves recognition through discriminative key poses and speed-aware action graphs. Mach. Vis. Appl. 28(1–2), 185–200 (2017)CrossRefGoogle Scholar
  47. 47.
    Yao, J.F.: On recursive estimation in incomplete data models. Statistics 34(1), 27–51 (2000)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Zhang, J., Ghahramani, Z., Yang, Y.: A probabilistic model for online document clustering with application to novelty detection. In: Advances in Neural Information Processing Systems, pp. 1617–1624 (2005)Google Scholar
  49. 49.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Patt. Anal. Mach. Intell. 29(6), 915–928 (2007)CrossRefGoogle Scholar
  50. 50.
    Zhu, C., Sheng, W.: Motion-and location-based online human daily activity recognition. Pervasive Mob. Comput. 7(2), 256–269 (2011)CrossRefGoogle Scholar
  51. 51.
    Zivkovic, Z., van der Heijden, F.: Recursive unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 651–656 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fatma Najar
    • 1
    Email author
  • Sami Bourouis
    • 2
    • 3
  • Rula Al-Azawi
    • 4
  • Ali Al-Badi
    • 4
  1. 1.Laboratoire RISC Robotique Informatique et Systèmes ComplexesUniversité de Tunis El Manar, ENITTunisTunisia
  2. 2.Taif UniversityTaifSaudi Arabia
  3. 3.Université de Tunis El Manar, LR-SITI Laboratoire SignalImage et Technologies de l’InformationTunisTunisia
  4. 4.Gulf College, Al MaabelahMuscatOman

Personalised recommendations