Flexible Statistical Learning Model for Unsupervised Image Modeling and Segmentation

  • Ines Channoufi
  • Fatma Najar
  • Sami BourouisEmail author
  • Muhammad Azam
  • Alrence S. Halibas
  • Roobaea Alroobaea
  • Ali Al-Badi
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)


We propose in this work to improve the tasks of image segmentation and modeling through an unsupervised flexible learning approach. Our focus here is to develop an alternative mixture model based on a bounded generalized Gaussian distribution, which is less sensitive to over-segmentation and offers more flexibility in data modeling than the Gaussian distribution which is certainly not the best approximation for image segmentation. A maximum likelihood- (ML) based algorithm is applied for estimating the resulted model parameters. We investigate here the integration of both a spatial information (a prior information between neighboring pixels) and a minimum description length (MDL) principle into the model learning step in order to deal with the major problems of finding the optimal number of classes and also selecting the best model that describes accurately the dataset. Therefore, the proposed model has the advantage to maintain the balance between model complexity and goodness of fit. Obtained results on a large database of medical MR images confirm the effectiveness of the proposed approach and demonstrate its superior performance compared to some conventional methods.


Unsupervised learning Generalized Gaussian distribution Maximum likelihood Spatial information Minimum description length Image segmentation 



This research is based on a grant received from the research council (TCR)-Oman.


  1. 1.
    Abbasi, S., Tajeripour, F.: Detection of brain tumor in 3d MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219, 526–535 (2017)CrossRefGoogle Scholar
  2. 2.
    Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26(2), 136–150 (2016)CrossRefGoogle Scholar
  3. 3.
    Ahmadvand, A., Daliri, M.R.: Improving the runtime of MRF based method for MRI brain segmentation. Appl. Math. Comput. 256, 808–818 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Al-Shaikhli, S.D.S., Yang, M.Y., Rosenhahn, B.: Multi-region labeling and segmentation using a graph topology prior and atlas information in brain images. Comput. Med. Imaging Graph. 38(8), 725–734 (2014)CrossRefGoogle Scholar
  5. 5.
    Alhakami, W., ALharbi, A., Bourouis, S., Alroobaea, R., Bouguila, N.: Network anomaly intrusion detection using a nonparametric Bayesian approach and feature selection. IEEE Access 7, 52181–52190 (2019)CrossRefGoogle Scholar
  6. 6.
    Allili, M.S., Bouguila, N., Ziou, D.: Finite general Gaussian mixture modeling and application to image and video foreground segmentation. J. Electron. Imaging 17(1), 013005–013005 (2008)CrossRefGoogle Scholar
  7. 7.
    Asman, A.J., Landman, B.A.: Non-local statistical label fusion for multi-atlas segmentation. Med. Image Anal. 17(2), 194–208 (2013)CrossRefGoogle Scholar
  8. 8.
    Ayed, I.B., Li, S., Ross, I.: Embedding overlap priors in variational left ventricle tracking. IEEE Trans. Med. Imaging 28(12), 1902–1913 (2009)CrossRefGoogle Scholar
  9. 9.
    Bishop, C.M.: Pattern recognition. Mach. Learn. 128 (2006)Google Scholar
  10. 10.
    Bouguila, N.: Clustering of count data using generalized Dirichlet multinomial distributions. IEEE Trans. Knowl. Data Eng. 20(4), 462–474 (2008)CrossRefGoogle Scholar
  11. 11.
    Bouguila, N., ElGuebaly, W.: Integrating spatial and color information in images using a statistical framework. Expert Syst. Appl. 37(2), 1542–1549 (2010)CrossRefGoogle Scholar
  12. 12.
    Bouguila, N., Ziou, D.: On fitting finite Dirichlet mixture using ECM and MML. In: Pattern Recognition and Data Mining, Third International Conference on Advances in Pattern Recognition, ICAPR 2005, Bath, UK, August 22–25, 2005, Proceedings, Part I. pp. 172–182 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Bouguila, N., Ziou, D.: A probabilistic approach for shadows modeling and detection. In: IEEE International Conference on Image Processing 2005, vol. 1, pp. I–329. IEEE, Piscataway (2005)Google Scholar
  14. 14.
    Bourouis, S., Hamrouni, K.: 3D segmentation of MRI brain using level set and unsupervised classification. Int. J. Image Graph. 10(1), 135–154 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bourouis, S., Hamrouni, K., Betrouni, N.: Automatic MRI brain segmentation with combined atlas-based classification and level-set approach. In: Image Analysis and Recognition, 5th International Conference, ICIAR. pp. 770–778 (2008)Google Scholar
  16. 16.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026–1038 (2002)CrossRefGoogle Scholar
  17. 17.
    Channoufi, I., Bourouis, S., Bouguila, N., Hamrouni, K.: Color image segmentation with bounded generalized Gaussian mixture model and feature selection. In: 4th International Conference on Advanced Technologies for Signal and Image Processing, ATSIP 2018, Sousse, Tunisia, March 21–24, 2018. pp. 1–6 (2018)Google Scholar
  18. 18.
    Channoufi, I., Bourouis, S., Bouguila, N., Hamrouni, K.: Image and video denoising by combining unsupervised bounded generalized Gaussian mixture modeling and spatial information. Multimed. Tools Appl. 77(19), 25591–25606 (2018)CrossRefGoogle Scholar
  19. 19.
    Channoufi, I., Bourouis, S., Bouguila, N., Hamrouni, K.: Spatially constrained mixture model with feature selection for image and video segmentation. In: Image and Signal Processing-8th International Conference, ICISP 2018, Cherbourg, France, July 2–4, 2018, Proceedings. pp. 36–44 (2018)Google Scholar
  20. 20.
    Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cocosco, C., Niessen, W., Netsch, T., Vonken, E., Lund, G., Stork, A., Viergever, M.: Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J. Magn. Reson. Imaging 25(2), 366–374 (2008)CrossRefGoogle Scholar
  22. 22.
    Cohen, F.S., Cooper, D.B.: Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian random fields. IEEE Trans. Pattern Anal. Mach. Intell. 2, 195–219 (1987)CrossRefGoogle Scholar
  23. 23.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fan, W., Sallay, H., Bouguila, N., Bourouis, S.: A hierarchical Dirichlet process mixture of generalized Dirichlet distributions for feature selection. Comput. Electr. Eng. 43, 48–65 (2015)CrossRefGoogle Scholar
  26. 26.
    Fradkin, M., Ciofolo, C., Mory, B., Hautvast, G., Breeuwer, M.: Comprehensive segmentation of cine cardiac MR images. Med. Image Comput. Comput. Assist. Interv. 11, 178–185 (2008)Google Scholar
  27. 27.
    Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. Comput. Vis. ECCV 2002, 21–25 (2002)zbMATHGoogle Scholar
  28. 28.
    Gao, G., Wen, C., Wang, H.: Fast and robust image segmentation with active contours and student’s-t mixture model. Pattern Recogn. 63, 71–86 (2017)CrossRefGoogle Scholar
  29. 29.
    Gass, T., Székely, G., Goksel, O.: Simultaneous segmentation and multiresolution nonrigid atlas registration. IEEE Trans. Image Process. 23(7), 2931–2943 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hung, W.L., Yang, M.S., Chen, D.H.: Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recogn. Lett. 29(9), 1317–1325 (2008)CrossRefGoogle Scholar
  31. 31.
    Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: A survey. Med. Image Anal. 24(1), 205–219 (2015)CrossRefGoogle Scholar
  32. 32.
    Ilunga-Mbuyamba, E., Avina-Cervantes, J.G., Garcia-Perez, A., de Jesus Romero-Troncoso, R., Aguirre-Ramos, H., Cruz-Aceves, I., Chalopin, C.: Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. Neurocomputing 220, 84–97 (2017)CrossRefGoogle Scholar
  33. 33.
    Ivanovska, T., Laqua, R., Wang, L., Schenk, A., Yoon, J.H., Hegenscheid, K., Völzke, H., Liebscher, V.: An efficient level set method for simultaneous intensity inhomogeneity correction and segmentation of MR images. Comput. Med. Imaging Graph. 48, 9–20 (2016)CrossRefGoogle Scholar
  34. 34.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRefGoogle Scholar
  35. 35.
    Kelly, P.A., Derin, H., Hartt, K.D.: Adaptive segmentation of speckled images using a hierarchical random field model. IEEE Trans. Acoust. Speech Signal Process. 36(10), 1628–1641 (1988)zbMATHCrossRefGoogle Scholar
  36. 36.
    Law, M.H., Figueiredo, M.A., Jain, A.K.: Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1154–1166 (2004)CrossRefGoogle Scholar
  37. 37.
    Lin, X., Cowan, B., Young, A.: Model-based graph cut method for segmentation of the left ventricle. Conf. Proc. IEEE Eng. Med. Biol. Socpp. 3, 3059–3062 (2005)Google Scholar
  38. 38.
    Lindblom, J., Samuelsson, J.: Bounded support gaussian mixture modeling of speech spectra. IEEE Trans. Speech and Audio Process. 11(1), 88–99 (2003)CrossRefGoogle Scholar
  39. 39.
    Liu, G., Wu, J., Zhou, S.: Probabilistic classifiers with a generalized Gaussian scale mixture prior. Pattern Recogn. 46(1), 332–345 (2013)zbMATHCrossRefGoogle Scholar
  40. 40.
    Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Elkington, A., Mohiaddin, R., Rueckert, D.: Segmentation of 4d cardiac MR images using a probabilistic atlas and the EM algorithm. Med. Image Anal. 8(3), 255–265 (2004)CrossRefGoogle Scholar
  41. 41.
    Lynch, M., Ghita, O., Whelan, P.F.: Segmentation of the left ventricle of the heart in 3-d+t MRI data using an optimized nonrigid temporal model. IEEE Trans. Med. Imaging 27(2), 195–203 (2008)CrossRefGoogle Scholar
  42. 42.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2. pp. 416–423, IEEE, Piscataway (2001)Google Scholar
  43. 43.
    McLachlan, G., Peel, D.: Finite Mixture Models. John, New York (2004)zbMATHGoogle Scholar
  44. 44.
    Menze, B.H., Leemput, K.V., Lashkari, D., Riklin-Raviv, T., Geremia, E., Alberts, E., Gruber, P., Wegener, S., Weber, M.A., Székely, G., Ayache, N., Golland, P.: A generative probabilistic model and discriminative extensions for brain lesion segmentation with application to tumor and stroke. IEEE Trans. Med. Imaging 35(4), 933–946 (2016)CrossRefGoogle Scholar
  45. 45.
    Najar, F., Bourouis, S., Bouguila, N., Belghith, S.: A comparison between different Gaussian-based mixture models. In: 14th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2017, Hammamet, Tunisia, October 30–Nov. 3, 2017. pp. 704–708 (2017)Google Scholar
  46. 46.
    Najar, F., Bourouis, S., Bouguila, N., Belghith, S.: A fixed-point estimation algorithm for learning the multivariate GGMM: application to human action recognition. In: 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE). pp. 1–4 (2018)Google Scholar
  47. 47.
    Najar, F., Bourouis, S., Zaguia, A., Bouguila, N., Belghith, S.: Unsupervised human action categorization using a Riemannian averaged fixed-point learning of multivariate GGMM. In: Unsupervised learning of finite full covariance multivariate generalized Gaussian mixture models for human activity recognition of Image Analysis and Recognition-15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27–29, 2018. pp. 408–415 (2018)Google Scholar
  48. 48.
    Najar, F., Bourouis, S., Bouguila, N., Belghith, S.: Unsupervised learning of finite full covariance multivariate generalized Gaussian mixture models for human activity recognition. Multimed. Tools Appl. 1–23 (2019)Google Scholar
  49. 49.
    Nguyen, T.M., Wu, Q.J., Zhang, H.: Bounded generalized gaussian mixture model. Pattern Recogn. 47(9), 3132–3142 (2014)zbMATHCrossRefGoogle Scholar
  50. 50.
    Ozden, M., Polat, E.: A color image segmentation approach for content-based image retrieval. Pattern Recogn. 40(4), 1318–1325 (2007)zbMATHCrossRefGoogle Scholar
  51. 51.
    Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)CrossRefGoogle Scholar
  52. 52.
    Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G.: Evaluation framework for algorithms segmenting short axis cardiac MRI. In: The MIDAS Journal-Cardiac MR Left Ventricle Segmentation Challenge (2009)Google Scholar
  53. 53.
    Rajalakshmi, N., Lakshmi Prabha, V.: Mri brain image classification—a hybrid approach. Int. J. Imaging Syst. Technol. 25(3), 226–244 (2015)CrossRefGoogle Scholar
  54. 54.
    Rezaee, M.R., van der Zwet, P.M.J., Lelieveldt, B.P.E., van der Geest, R.J., Reiber, J.H.C.: A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans. Image Process. 9(7), 1238–1248 (2000)CrossRefGoogle Scholar
  55. 55.
    Ribbens, A., Hermans, J., Maes, F., Vandermeulen, D., Suetens, P.: Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images. IEEE Trans. Med. Imaging 33(2), 201–224 (2014)CrossRefGoogle Scholar
  56. 56.
    Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)zbMATHCrossRefGoogle Scholar
  57. 57.
    Roth, V., Ommer, B.: Exploiting low-level image segmentation for object recognition. In: Joint Pattern Recognition Symposium. pp. 11–20, Springer, Berlin (2006)Google Scholar
  58. 58.
    Saritha, S., Amutha Prabha, N.: A comprehensive review: Segmentation of MRI images—brain tumor. Int. J. Imaging Syst. Technol. 26(4), 295–304 (2016)CrossRefGoogle Scholar
  59. 59.
    Sefidpour, A., Bouguila, N.: Spatial color image segmentation based on finite non-Gaussian mixture models. Expert Syst. Appl. 39(10), 8993–9001 (2012)CrossRefGoogle Scholar
  60. 60.
    Tenenbaum, J.M., Barrow, H.G.: Experiments in interpretation-guided segmentation. Artif. Intell. 8(3), 241–274 (1977)CrossRefGoogle Scholar
  61. 61.
    Thapaliya, K., Pyun, J.Y., Park, C.S., Kwon, G.R.: Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Comput. Med. Imaging Graph. 37(7–8), 522–537 (2013)CrossRefGoogle Scholar
  62. 62.
    Uzümcü, M., van der Geest, R., Swingen, C., Reiber, J., Lelieveldt, B.: Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming. Invest. Radiol. 41(1), 52–62 (2006)CrossRefGoogle Scholar
  63. 63.
    van der Lijn, F., de Bruijne, M., Klein, S., den Heijer, T., Hoogendam, Y.Y., van der Lugt, A., Breteler, M.M.B., Niessen, W.J.: Automated brain structure segmentation based on atlas registration and appearance models. IEEE Trans. Med. Imaging 31(2), 276–286 (2012)CrossRefGoogle Scholar
  64. 64.
    Verma, H., Agrawal, R.K., Kumar, N.: Improved fuzzy entropy clustering algorithm for MRI brain image segmentation. Int. J. Imaging Syst. Technol. 24(4), 277–283 (2014)CrossRefGoogle Scholar
  65. 65.
    Wang, L., Pan, C.: Image-guided regularization level set evolution for MR image segmentation and bias field correction. Magn. Reson. Imaging 32(1), 71–83 (2014)CrossRefGoogle Scholar
  66. 66.
    Xia, Y., Ji, Z., Zhang, Y.: Brain MRI image segmentation based on learning local variational Gaussian mixture models. Neurocomputing 204, 189–197 (2016), big Learning in Social Media Analytics Containing a selection of papers from the 2014 International Conference on Security, Pattern Analysis, and Cybernetics (ICSPAC2014)Google Scholar
  67. 67.
    Yang, X., Krishnan, S.M.: Image segmentation using finite mixtures and spatial information. Image Vis. Comput. 22(9), 735–745 (2004)CrossRefGoogle Scholar
  68. 68.
    Yang, M.S., Lai, C.Y., Lin, C.Y.: A robust EM clustering algorithm for gaussian mixture models. Pattern Recogn. 45(11), 3950–3961 (2012)zbMATHCrossRefGoogle Scholar
  69. 69.
    Yousefi, S., Kehtarnavaz, N., Gholipour, A.: Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images. IEEE Trans. Biomed. Eng. 59(7), 1808–1817 (2012)CrossRefGoogle Scholar
  70. 70.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  71. 71.
    Zhang, Z., Chen, C., Sun, J., Chan, K.L.: EM algorithms for gaussian mixtures with split-and-merge operation. Pattern Recogn. 36(9), 1973–1983 (2003)zbMATHCrossRefGoogle Scholar
  72. 72.
    Zhou, S., Wang, J., Zhang, M., Cai, Q., Gong, Y.: Correntropy-based level set method for medical image segmentation and bias correction. Neurocomputing 234, 216–229 (2017)CrossRefGoogle Scholar
  73. 73.
    Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imaging 13(4), 716–724 (1994)CrossRefGoogle Scholar
  74. 74.
    Ziou, D., Bouguila, N.: Unsupervised learning of a finite gamma mixture using MML: application to SAR image analysis. In: ICPR (2). pp. 68–71 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ines Channoufi
    • 1
  • Fatma Najar
    • 2
  • Sami Bourouis
    • 3
    • 4
    Email author
  • Muhammad Azam
    • 5
  • Alrence S. Halibas
    • 6
  • Roobaea Alroobaea
    • 7
  • Ali Al-Badi
  1. 1.Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de TunisLR-SITI Laboratoire Signal, Image et Technologies de l’InformationTunisTunisia
  2. 2.Laboratoire RISC Robotique Informatique et Systémes ComplexesUniversité de Tunis El ManarENITTunisia
  3. 3.Taif UniversityTaifSaudi Arabia
  4. 4.Université de Tunis El Manar, LR-SITI Laboratoire SignalImage et Technologies de l’InformationTunisTunisia
  5. 5.Department of Electrical and Computer Engineering (ECE)Concordia UniversityMontrealCanada
  6. 6.Gulf CollegeAl MaabelahMuscatOman
  7. 7.Taif UniversityTaifSaudi Arabia

Personalised recommendations